SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:c9a46090-9de9-4f89-905f-fe1bd4e8cc14"
 

Search: onr:"swepub:oai:research.chalmers.se:c9a46090-9de9-4f89-905f-fe1bd4e8cc14" > Numerical model to ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Numerical model to estimate subcooled flow boiling heat flux and to indicate vapor bubble interaction

Vasudevan, Sudharsan, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Etemad, Sassan (author)
Volvo Cars
Davidson, Lars, 1957 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Montero Villar, Gonzalo, 1992 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier BV, 2021
2021
English.
In: International Journal of Heat and Mass Transfer. - : Elsevier BV. - 0017-9310. ; 170
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • There are numerous technical applications where hot components, with uneven temperature distribution, require cooling. In such applications, it is desired to provide efficient local cooling of the hot spots, while avoiding unnecessary over-cooling of the other regions. Such an approach, known as precision cooling, has several advantages. In addition to the fact that it reduces the effort for cooling, it limits the unintended heat lost to the cooling medium. In liquid cooled systems, such as Internal Combustion Engines (ICE), subcooled flow boiling offers immense potential for precision cooling. The primary challenges in extracting this potential are understanding the complexities in the subcooled flow boiling phenomenon and estimating the risk of encountering film boiling. The present study introduces a numerical model to estimate the wall heat flux in subcooled flow boiling and the model includes a mechanistic formulation to account for vapor bubble interaction. The formulation for vapor bubble interaction serves two purposes: (a) blends two well-established models in the literature, one in the isolated bubbles regime and other in the fully developed boiling regime, to estimate the wall heat flux; and (b) provides information to limit boiling in order to not encounter film boiling. The results from the new model are validated with two different experiments in the literature and the wall heat flux estimated by the model is in agreement with experimental results and responsive to different input parameters, such as bulk velocity, operating pressure and inlet subcooling. The new model requires only input of local flow quantities and hence implementation in Computational Fluid Dynamics (CFD) is straightforward.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Keyword

Boiling regimes
Precision cooling
Active nucleation site density
Vapour bubble interaction
Subcooled flow boiling

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view