SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:d8523d14-ae3b-4150-8de8-0e5f9c634f6d"
 

Search: onr:"swepub:oai:research.chalmers.se:d8523d14-ae3b-4150-8de8-0e5f9c634f6d" > Promiscuous phospho...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products

Hellgren, John, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Novo Nordisk Fonden,Novo Nordisk Foundation
Godina, Alexei (author)
Total S.A.
Nielsen, Jens B, 1962 (author)
BioInnovation Institute (BII),Novo Nordisk Fonden,Novo Nordisk Foundation,Chalmers tekniska högskola,Chalmers University of Technology
show more...
Siewers, Verena, 1976 (author)
Chalmers tekniska högskola,Chalmers University of Technology,Novo Nordisk Fonden,Novo Nordisk Foundation
show less...
 (creator_code:org_t)
Elsevier BV, 2020
2020
English.
In: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 62, s. 150-160
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Carbon-conserving pathways have the potential of increasing product yields in biotechnological processes. The aim of this project was to investigate the functionality of a novel carbon-conserving pathway that produces 3 mol of acetyl-CoA from fructose-6-phosphate without carbon loss in the yeast Saccharomyces cerevisiae. This cyclic pathway relies on a generalist phosphoketolase (Xfspk), which can convert xylulose-5-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate (S7P) to acetyl phosphate. This cycle is proposed to overcome bottlenecks from the previously reported non-oxidative glycolysis (NOG) cycle. Here, in silico simulations showed accumulation of S7P in the NOG cycle, which was resolved by blocking the non-oxidative pentose phosphate pathway and introducing Xfspk and part of the riboneogenesis pathway. To implement this, a transketolase and transaldolase deficient S. cerevisiae was generated and a cyclic pathway, the Glycolysis AlTernative High Carbon Yield Cycle (GATHCYC), was enabled through xfspk expression and sedoheptulose bisphosphatase (SHB17) overexpression. Flux through the GATHCYC was demonstrated in vitro with a phosphoketolase assay on crude cell free extracts, and in vivo by constructing a strain that was dependent on a functional pathway to survive. Finally, we showed that introducing the GATHCYC as a carbon-conserving route for 3-hydroxypropionic acid (3-HP) production resulted in a 109% increase in 3-HP titers when the glucose was exhausted compared to the phosphoketolase route only.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Andra medicinska och farmaceutiska grundvetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Other Basic Medicine (hsv//eng)
NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Medical Biotechnology (hsv//eng)

Keyword

Mathematical modelling
Saccharomyces cerevisiae
Synthetic biology
Non-oxidative glycolysis
3-Hydroxypropionic acid
Metabolic engineering

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view