SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:e13985cd-69a6-4665-9b10-a75d2ca45156"
 

Search: onr:"swepub:oai:research.chalmers.se:e13985cd-69a6-4665-9b10-a75d2ca45156" > Comparison of indus...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Comparison of industrial xylose fermentation with yeast performed at different process scale

Albers, Eva, 1966 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Koppram, Rakesh, 1986 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Wännström, Sune (author)
show more...
Lambert, Annika (author)
Zacchi, Guido (author)
Nielsen, Fredrik (author)
Welin, Lars (author)
Olsson, Lisbeth, 1963 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2012
2012
English.
In: 13th International Congress on Yeasts, ICY 2012, August 26-30, Madison, USA.
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • Second generation of bioethanol production with yeast from lignocellulosic material may contribute to a sustainable production of energy. However, the commercialization of cellulose-to-ethanol remains challenging due to various limitations in process technology and microbial physiology. Despite that the technical progress lately has come far, lignocellulose bioethanol production is still not well established in full production scale. Production scale demands large financial investments and to minimize the risk knowledge about cellular performance of the yeast as response to conditions of large scale is needed. Large scale may impose specific conditions that normally are not present in smaller scale. Such conditions are then needed to be identified and mimicked in smaller scale to obtain crucial scaling-up data. In this project, we wanted to establish scalable cultivation processes and compare the performance at different scales. Experiments were performed at three process scales: lab (1.5 l), process development unit (15 l) and demonstration (10 m3) scales, with an industrial recombinant xylose fermenting Saccharomyces cerevisiae strain and corn cob, bagasse, and spruce lignocellulosic material. It was found that separate fermentation and SSF experiments could be reproducible at all scales. An ethanol level could be obtained above 4 % which is the threshold for feasible down-stream processing. Demonstration scale experiments on xylose-rich liquid of pre-treated corn cobs resulted in a 90% conversion of xylose to ethanol and on the slurry in SSF cultivation an ethanol yield of 0.44 g/g xylose was obtained.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology (hsv//eng)

Publication and Content Type

kon (subject category)
vet (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view