SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:e464b6bf-6ee7-4324-b653-68ae45a85d26"
 

Search: onr:"swepub:oai:research.chalmers.se:e464b6bf-6ee7-4324-b653-68ae45a85d26" > Numerical investiga...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier-Stokes and improved delayed detached eddy simulation performance

Dong, Tianyun, 1990 (author)
Central South University
Minelli, Guglielmo, 1988 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Wang, Jiabin, 1993 (author)
Central South University
show more...
Liang, Xifeng (author)
Central South University
Krajnovic, Sinisa, 1970 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
AIP Publishing, 2022
2022
English.
In: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 34:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The underbody flow of a truncated, 1:10 scaled, CRH380A model is investigated at Re = 2.78 × 105 in this paper. The large-eddy simulation (LES) is used to study the main features of the development of the underbody flow under the snowplow, in the bogie/cavity region and after the cavity (equip-cabin region). A grid independence study and a validation against experimental data have been done prior to the investigation. The snowplow region is dominated by a pair of separated counter-rotating vortices, which further affects the downstream flow. A strong shear layer is observed in the cavity region, and the turbulent flow is intensively triggered by the shear instability and the complex bogie components within the cavity region. The equip-cabin region allows the turbulent flow to develop without any disturbance, decreasing the turbulence intensity. Moreover, the steady and unsteady Reynolds-averaged Navier-Stokes (RANS, URANS) model and the improved delayed detached eddy simulation (IDDES) are used to compute the same flow, and to compare the results to LES. The solution differences, in terms of aerodynamic forces and the underbody flow state, are analyzed. Specifically, the minimum velocity discrepancy, at line2, between RANS (URANS) and LES is 14.4%, while IDDES is 3.6%. The solution accuracy vs the computational cost is also reported.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view