SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:e58ed020-7aa7-4943-8dfd-6860a1878e84"
 

Search: onr:"swepub:oai:research.chalmers.se:e58ed020-7aa7-4943-8dfd-6860a1878e84" > Thermal cycling agi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00004565naa a2200421 4500
001oai:research.chalmers.se:e58ed020-7aa7-4943-8dfd-6860a1878e84
003SwePub
008171007s2008 | |||||||||||000 ||eng|
024a https://research.chalmers.se/publication/416452 URI
024a https://doi.org/10.1109/TCAPT.2008.9167932 DOI
040 a (SwePub)cth
041 a engb eng
042 9 SwePub
072 7a art2 swepub-publicationtype
072 7a ref2 swepub-contenttype
100a Andersson, Cristina,d 1969u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)anitsirc
2451 0a Thermal cycling aging effect on the shear strength, microstructure, IMC and initiation and propagation of surface mounted Sn-3.8Ag-0.7Cu and wave soldered Sn-3.5Ag ceramic chip components
264 1c 2008
520 a Temperature cycling of electronic components was carried out at two different temperature profiles, the first ranging between -55°C and 100°C (TC1) and the second between 0°C and 100°C (TC2). Totally, 7000 cycles were run at TC1 and 14500 cycles at TC2. The test board’s top-side components were surface mounted using Sn-3.8Ag-0.7Cu solder alloy, and bottom side SMD components were wave soldered with Sn-3.5Ag alloy. The solder joint degradation was investigated as a function of cycle number by means of shear strength measurements and cross-sectioning. The shear strength drop was correlated to both crack initiation time and propagation rate, and Microstructural changes. The effect of manufacturing process (reflow versus wave soldering) and component size (0805 versus 0603 components) on the shear strength were also investigated.For both reflow and wave soldered components, the harsher the test environment the faster and largest the decrease in shear strength. The shear force is higher for the 0805 components compared to the 0603. The effect of component size on the residual shear strength is higher for the testing condition TC1. TC1 also seems to have a higher effect on the residual shear strength compared to TC2. The main difference between wave soldered and reflow soldered components is that the shear strength is in average higher for the wave soldered components compared to the reflow soldered. For the reflow soldered components using SAC, the microstructure coarsens, especially the Ag3Sn intermetallic particles. Furthermore, this alloy shows an increase of the IMC layer (Cu-Ni-Sn) thickness, and the IMC layer growth is controlled by a diffusion mechanism. The IMC growth coefficient is for the SAC system tested at TC1 0.0231 μm/hr1/2 (0.00053μm/hr) and for TC2 0.0054 μm/hr1/2 (2.9*10-5μm/hr). The microstructural changes during thermal cycling are a result of both static and strain-enhanced aging. For the wave soldered components the microstructure also became coarser, however, the IMC layer (Ni3Sn4) thickness did not change.The IMC layer growth does not affect the shear strength for the test conditions applied in this work. The shear strength decrease observed in the present work as a result of thermal cycling is a result of both microstructural coarsening and crack propagation inside the solder joint.
650 7a TEKNIK OCH TEKNOLOGIERx Elektroteknik och elektronik0 (SwePub)2022 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Electrical Engineering, Electronic Engineering, Information Engineering0 (SwePub)2022 hsv//eng
650 7a TEKNIK OCH TEKNOLOGIERx Elektroteknik och elektronikx Annan elektroteknik och elektronik0 (SwePub)202992 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Electrical Engineering, Electronic Engineering, Information Engineeringx Other Electrical Engineering, Electronic Engineering, Information Engineering0 (SwePub)202992 hsv//eng
653 a Crack initiation
653 a Shear force
653 a Crack propagation
653 a Intermetallic compound (IMC)
653 a Microstructure
653 a Thermal cycling
700a Tegehall, Per-Erik4 aut
700a Andersson, Dag R.4 aut
700a Wetter, G.4 aut
700a Liu, Johan,d 1960u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)jliu
710a Chalmers tekniska högskola4 org
773t IEEE Transactions on Components and Packaging Technologiesg 31:2, s. 331-344q 31:2<331-344x 1521-3331
856u http://dx.doi.org/10.1109/TCAPT.2008.916793y FULLTEXT
8564 8u https://research.chalmers.se/publication/41645
8564 8u https://doi.org/10.1109/TCAPT.2008.916793

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view