SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:e693a192-03c8-4f30-b645-97ff29694008"
 

Search: onr:"swepub:oai:research.chalmers.se:e693a192-03c8-4f30-b645-97ff29694008" > Singlet Fission and...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Singlet Fission and Exciton Coupling Design Principles for Efficient Photon Harvesting

Ringström, Rasmus, 1993 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
ISBN 9789181030167
Gothenburg, 2024
English.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Extensive research efforts have been dedicated to unravelling the diverse array of processes triggered by the interaction of light with matter. Harnessing and comprehending some of these phenomena holds immense potential in humanity's transition towards renewable energy sources. At the heart of this transition lies the Sun, which provides the Earth with an abundance of energy in the form of light. In addition to generating electricity through solar cells, sunlight can also drive photochemical reactions to produce fuels such as hydrogen gas. Despite significant strides in utilizing solar energy, there remain numerous processes that are not fully understood, presenting opportunities for refinement and enhancement. This thesis embarks on an exploration of the photophysical processes of singlet fission (SF) and exciton coupling, aimed at maximizing the efficient utilization of the energy of light, particularly from the Sun. Both SF and exciton coupling rely heavily on the relative orientation and distance between the interacting molecules. Therefore, the essence of the research presented in this thesis revolves around the complex interplay between molecular structure and photophysical properties. This thesis underscores how various configurations of identical molecules can result in diverse photophysical outcomes. Furthermore, it showcases the importance of considering both the interconnectivity of molecules from a Lewis structure and optimal energy configuration standpoint, as well as their capacity to assume different conformations dynamically. SF has been explored in three systems. The initial investigation, focused on pentacene derivatives, aimed at elucidating the impact of rotational conformations in intramolecular SF systems. The second study aimed to expand the limited library of photostable, intramolecularly capable SF molecules by investigating an anthracene derivative. However, this study revealed additional processes that hindered SF efficiency, underscoring the delicate balance required between energetics, molecular interconnectivity, and solvent polarity for efficient SF. In the final SF study, strides were made towards integrating SF into dye-sensitized solar cells, utilizing a derivative of diphenylisobenzofuran integrated with semiconductor thin films. The study highlights the importance of substrate energetics and solvent polarity in dictating the dominant photophysical processes on the surface, with highly polar solvents impeding SF by stabilizing charge-separated states. In the exciton coupling related study, strategic alignment of molecular systems comprising boron dipyrromethene and anthracene in a covalent J-aggregate-like configuration demonstrated a novel method of selectively modulating the energy of the singlet excited state while leaving the triplet excited state energy unaffected. This work thus demonstrates how photophysical properties can be tuned via molecular design, with potential applications in various fields of optoelectronics.

Subject headings

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Keyword

exciton coupling
electron transfer
Singlet fission
transient absorption spectroscopy

Publication and Content Type

dok (subject category)
vet (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ringström, Rasmu ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Physical Chemist ...
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view