SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:ebc53331-8a16-4b2c-bc2e-83263c3398b3"
 

Search: onr:"swepub:oai:research.chalmers.se:ebc53331-8a16-4b2c-bc2e-83263c3398b3" > The influence of KC...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The influence of KCl on the corrosion of an austenitic stainless steel (304L) in oxidizing humid conditions at 600 ºC: A microstructural study

Jonsson, Torbjörn, 1970 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Froitzheim, Jan, 1981 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Pettersson, Jesper, 1978 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Svensson, Jan-Erik, 1965 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Johansson, Lars-Gunnar, 1952 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Halvarsson, Mats, 1965 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2009-05-21
2009
English.
In: Oxidation of Metals. - : Springer Science and Business Media LLC. - 1573-4889 .- 0030-770X. ; 72:3, s. 213-239
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The effect of KCl on the corrosion behavior of the austenitic stainless steel 304L was studied at 600 A degrees C in 5% O(2) + 40% H(2)O + N(2). The breakdown of the protective oxide was investigated. This was done through a detailed microstructural characterization of the oxide scales formed after 1, 24 and 168 h. The oxidized samples were investigated by SEM/EDX, FIB and STEM/EDX. The presence of KCl(s) causes a breakdown of most of the protective scale, even though it is not in direct contact with KCl(s) particles, starting after just 1 h exposure. A fast growing porous oxide formed in direct contact with (former) KCl(s) particles and an about 2 mu m thick scale covered most of the surface. Only some regions were covered by a thin scale. K(2)CrO(4) particles were randomly distributed all over the scale after 1 h exposure. The particles are situated above the oxide scale and are not in direct contact with the subjacent metal. The thin scale contains lower Cr levels than has been observed in corresponding scales formed in the absence of KCl. The breakdown of the protective scale is suggested to be caused primarily by the formation of K(2)CrO(4), depleting the protective oxide in chromium. In addition, chromia evaporation contributes to chromia depletion and breakdown of the protective scale. Very little or no transition metal chlorides were found after breakaway oxidation. Cl is suggested to play a minor role in the initial breakdown of the protective scale. The presence of KCl particles caused local rapid oxidation, which results in an outward growing Fe and Fe-Cr rich porous oxide.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view