SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:slubar.slu.se:113011"
 

Search: onr:"swepub:oai:slubar.slu.se:113011" > Environmental drive...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Environmental drivers and abrupt changes of phytoplankton community in temperate lake Lielais Svetinu, Eastern Latvia, over the last Post-Glacial period from 14.5 kyr

Belle, Simon (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för vatten och miljö,Department of Aquatic Sciences and Assessment
 (creator_code:org_t)
 
Elsevier BV, 2021
2021
English.
In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 263
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Understanding the long-term dynamics of ecological communities on the centuries-to-millennia scale is important for explaining the emergence of present-day biodiversity patterns and for predicting possible future scenarios. Fossil pigments and ancient DNA present in various sedimentary deposits can be analysed to study long-term changes in ecological communities. We analysed recent compilations of data, including fossil pigments, microfossils, and molecular inventories from the sedimentary archives, to understand the impact of gradual versus abrupt climate changes on the ecosystem status of a regional model lake over the last similar to 14.5 kyr. Such long and complete paleo-archives are scarce in North-Eastern Europe. The study site lies in a sensitive area, both climatically and in respect to vegetation. Namely the maritime-continentality line runs west to east in the central Baltic area to NE Europe and its south-north transect lies within the gradual decay of the nemoral forest into a boreal environment. Therefore, the selected location is an ideal sampling point to decipher long term environmental changes in the temperate climate zone. The main objective of the present study was to find out external factors influencing phototroph dynamics at temperate Lake Lielais Svetinu over the post-glacial period (similar to 14.5 kyr). We were able to model climate change together with vegetation change and the appearance of anthropogenic forcing, either as a gradual change or as abrupt events that influenced the phototrophs, which are keystone groups within the lacustrine ecosystem. Most interestingly, the gradual increase of species richness of phototrophs was linked to similar increase in fungal parasites of the same group - phototrophs. Abrupt climate change in the Late Glacial period caused abrupt events in the ecosystem but equally abrupt events were caused by gradual changes during the stable period of the Holocene Thermal Maximum (HTM). In addition, we highlight the increased frequency and degree of perturbation in pristine lakes due to low impact human activity over a larger region. Both observations demonstrate an impaired relationship between gradual external drivers and ecosystem response and apply to future scenarios of climate warming and increased human impact in north-eastern Europe. (C) 2021 The Authors. Published by Elsevier Ltd.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Klimatforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Climate Research (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Belle, Simon
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Climate Research
Articles in the publication
Quaternary Scien ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view