SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:slubar.slu.se:115912"
 

Search: onr:"swepub:oai:slubar.slu.se:115912" > Aggregation of glut...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Aggregation of gluten proteins - from wheat seed biology to hydrogels : scientific modelling based primarily on Monte-Carlo and HPLC methods

Markgren, Joel (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för växtförädling,Department of Plant Breeding
 (creator_code:org_t)
 
ISBN 9789177608950
2022
English.
Series: Acta Universitatis Agriculturae Sueciae, 1652-6880
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Gluten proteins are intrinsically disordered proteins that form extensive aggregated networks in wheat seeds, where they are stored as a nutrient source for the embryo. A modelling approach involving computational biology with Monte-Carlo algorithms and wet laboratory studies, including HPLC analysis, was applied to unravel the aggregational and hydrogelforming properties of the gluten proteins. Two of the gluten proteins, “αgliadin” and “low molecular weight glutenin subunits” (LMW-GS) were found to have similar size, folding of disordered, rigid and compact structures, elliptical shape and secondary structures of random coils and turns. Both proteins also share an evolutionarily conserved motif resulting in internal disulphide bonds, which were shown to be established through hydrophobic interactions, together with the inherent order of cysteines. In laboratory conditions and simulations, it was found that gliadins formed oligomers by hydrophobic interactions and cross-links by disulphide and lanthionine bonds at peptide sections in the C-terminal part of the protein. At the N-terminal part, the protein formed oligomers by liquid-liquid phase separation, polyproline II structures and β-sheets. Heat and alkaline treatment was shown to favour cross-linking by lanthionine, lysinoalanine and disulphide bonds among gliadins and increase their ability to absorb liquid. Thus the modelling approach successfully characterised the gluten proteins α-gliadin and LMW-GS, the mechanisms by which they form internal and external cross-links, how they merge into oligomers and how to increase their liquid absorption.

Subject headings

LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Jordbruksvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Agricultural Science (hsv//eng)
NATURVETENSKAP  -- Biologi -- Botanik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Botany (hsv//eng)

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Markgren, Joel
About the subject
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Agricultural Sci ...
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Botany
Parts in the series
Acta Universitat ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view