SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:slubar.slu.se:117095"
 

Search: onr:"swepub:oai:slubar.slu.se:117095" > The influence of su...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The influence of sucrose on soil nitrogen availability - A root exudate simulation using microdialysis

Buckley, Scott (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management,University of Queensland
Näsholm, Torgny (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management
Jämtgård, Sandra (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management
 (creator_code:org_t)
 
Elsevier BV, 2022
2022
English.
In: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 409
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Root exudates are thought to promote nitrogen (N) availability via rhizosphere interactions, but empirical evidence is difficult to obtain given the scale and temporary nature of these processes. Microdialysis has potential to simulate root exudation patterns and quantify the effects on N availability simultaneously, but this has so far not been attempted. In a conceptual root exudation study, we used sucrose as a simple C source to investigate if microdialysis could detect the effects of continuous localised C supply on soil inorganic N fluxes. Through retrodialysis we released sucrose and simultaneously monitored diffusive soil N fluxes over one week, followed by a further seven days without sucrose. Based on current understanding of rhizosphere N dynamics, we hypothesised that N fluxes are inversely related to sucrose release, and upon ceasing release, N fluxes would increase. Using a 5 mM sucrose perfusate, C releases resulted in decreased N fluxes, but contrary to our hypothesis, N fluxes did not increase after ceasing sucrose release (c.f. control soil). Diffusive sucrose efflux from microdialysis probes increased in soils amended with N-rich litter suggesting that microbial activity and associated sucrose consumption altered sucrose concentration gradients. The fluxes of sucrose breakdown products glucose and fructose were greatest in litter treatments receiving sucrose, indicative of increased invertase activity in the presence of fresh organic matter. In the short term (days), sucrose release did not prompt an increase in inorganic N availability, possibly because of stimulated microbial growth and increased N demand under C-rich conditions. Our study confirms that microdialysis allows time-sensitive insight into the dynamic interactions of carbon and N in the rhizosphere.

Subject headings

LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Markvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Soil Science (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Geoderma (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Buckley, Scott
Näsholm, Torgny
Jämtgård, Sandra
About the subject
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Soil Science
Articles in the publication
Geoderma
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view