SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:slubar.slu.se:53070"
 

Search: onr:"swepub:oai:slubar.slu.se:53070" > Traits underspinnin...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Traits underspinning desiccation resistance explain distribution patterns of terrestrial isopods

Krab, Eveline (author)
VU University Amsterdam
Wardle, David (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management
 (creator_code:org_t)
 
2012-12-07
2013
English.
In: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 172, s. 667-677
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Predicted changes in soil water availability regimes with climate and land-use change will impact the community of functionally important soil organisms, such as macro-detritivores. Identifying and quantifying the functional traits that underlie interspecific differences in desiccation resistance will enhance our ability to predict both macro-detritivore community responses to changing water regimes and the consequences of the associated species shifts for organic matter turnover. Using path analysis, we tested (1) how interspecific differences in desiccation resistance among 22 northwestern European terrestrial isopod species could be explained by three underlying traits measured under standard laboratory conditions, namely, body ventral surface area, water loss rate and fatal water loss; (2) whether these relationships were robust to contrasting experimental conditions and to the phylogenetic relatedness effects being excluded; (3) whether desiccation resistance and hypothesized underlying traits could explain species distribution patterns in relation to site water availability. Water loss rate and (secondarily) fatal water loss together explained 90 % of the interspecific variation in desiccation resistance. Our path model indicated that body surface area affects desiccation resistance only indirectly via changes in water loss rate. Our results also show that soil moisture determines isopod species distributions by filtering them according to traits underpinning desiccation resistance. These findings reveal that it is possible to use functional traits measured under standard conditions to predict soil biota responses to water availability in the field over broad spatial scales. Taken together, our results demonstrate an increasing need to generate mechanistic models to predict the effect of global changes on functionally important organisms.

Subject headings

NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)
LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Markvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Soil Science (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Oecologia (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Krab, Eveline
Wardle, David
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Ecology
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Soil Science
Articles in the publication
Oecologia
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view