SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2020-2021)"

Search: L773:0012 1797 OR L773:1939 327X > (2020-2021)

  • Result 11-20 of 38
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Garcia-Vaz, Eliana, et al. (author)
  • Inhibition of NFAT signaling restores microvascular endothelial function in diabetic mice
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:3, s. 424-435
  • Journal article (peer-reviewed)abstract
    • Central to the development of diabetic macro- and microvascular disease is endothelial dysfunction, which appears well before any clinical sign but, importantly, is potentially reversible. We previously demonstrated that hyperglycemia activates nuclear factor of activated T cells (NFAT) in conduit and medium-sized resistance arteries and that NFAT blockade abolishes diabetes-driven aggravation of atherosclerosis. In this study, we test whether NFAT plays a role in the development of endothelial dysfunction in diabetes. NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita (Ins21/2) mice when compared with nondiabetic littermates. Treatment of diabetic mice with the NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase transcriptional activity in skin microvessels, resulting in improved microvascular function, as assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. This improvement was abolished by pretreatment with the nitric oxide (NO) synthase inhibitor L-NGnitro-L-arginine methyl ester, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed differences. A-285222 treatment enhanced dermis endothelial NO synthase expression and plasma NO levels of diabetic mice. It also prevented induction of inflammatory cytokines interleukin-6 and osteopontin, lowered plasma endothelin-1 and blood pressure, and improved mouse survival without affecting blood glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve endothelial function in diabetes.
  •  
12.
  • Hedjazifar, Shahram, 1975, et al. (author)
  • The Novel Adipokine Gremlin 1 Antagonizes Insulin Action and Is Increased in Type 2 Diabetes and NAFLD/NASH
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:3, s. 331-341
  • Journal article (peer-reviewed)abstract
    • The BMP2/4 antagonist and novel adipokine Gremlin 1 is highly expressed in human adipose cells and increased in hypertrophic obesity. As a secreted antagonist, it inhibits the effect of BMP2/4 on adipose precursor cell commitment/differentiation. We examined mRNA levels of Gremlin 1 in key target tissues for insulin and also measured tissue and serum levels in several carefully phenotyped human cohorts. Gremlin 1 expression was high in adipose tissue, higher in visceral than in subcutaneous tissue, increased in obesity, and further increased in type 2 diabetes (T2D). A similar high expression was seen in liver biopsies, but expression was considerably lower in skeletal muscles. Serum levels were increased in obesity but most prominently in T2D. Transcriptional activation in both adipose tissue and liver as well as serum levels were strongly associated with markers of insulin resistance in vivo (euglycemic clamps and HOMA of insulin resistance), and the presence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). We also found Gremlin 1 to antagonize insulin signaling and action in human primary adipocytes, skeletal muscle, and liver cells. Thus, Gremlin 1 is a novel secreted insulin antagonist and biomarker as well as a potential therapeutic target in obesity and its complications T2D and NAFLD/NASH.
  •  
13.
  • Herzog, Katharina, et al. (author)
  • Metabolic Effects of Gastric Bypass Surgery : Is It All About Calories?
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:9, s. 2027-2035
  • Journal article (peer-reviewed)abstract
    • Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.
  •  
14.
  • Jahoor, Farook, et al. (author)
  • Metabolomics Profiling of Patients With A-β+ Ketosis-Prone Diabetes During Diabetic Ketoacidosis
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:8, s. 1898-1909
  • Journal article (peer-reviewed)abstract
    • When stable and near-normoglycemic, patients with "A-β+" ketosis-prone diabetes (KPD) manifest accelerated leucine catabolism and blunted ketone oxidation, which may underlie their proclivity to develop diabetic ketoacidosis (DKA). To understand metabolic derangements in A-β+ KPD patients during DKA, we compared serum metabolomics profiles of adults during acute hyperglycemic crises, without (n = 21) or with (n = 74) DKA, and healthy control subjects (n = 17). Based on 65 kDa GAD islet autoantibody status, C-peptide, and clinical features, 53 DKA patients were categorized as having KPD and 21 type 1 diabetes (T1D); 21 nonketotic patients were categorized as having type 2 diabetes (T2D). Patients with KPD and patients with T1D had higher counterregulatory hormones and lower insulin-to-glucagon ratio than patients with T2D and control subjects. Compared with patients withT2D and control subjects, patients with KPD and patients with T1D had lower free carnitine and higher long-chain acylcarnitines and acetylcarnitine (C2) but lower palmitoylcarnitine (C16)-to-C2 ratio; a positive relationship between C16 and C2 but negative relationship between carnitine and β-hydroxybutyrate (BOHB); higher branched-chain amino acids (BCAAs) and their ketoacids but lower ketoisocaproate (KIC)-to-Leu, ketomethylvalerate (KMV)-to-Ile, ketoisovalerate (KIV)-to-Val, isovalerylcarnitine-to-KIC+KMV, propionylcarnitine-to-KIV+KMV, KIC+KMV-to-C2, and KIC-to-BOHB ratios; and lower glutamate and 3-methylhistidine. These data suggest that during DKA, patients with KPD resemble patients with T1D in having impaired BCAA catabolism and accelerated fatty acid flux to ketones-a reversal of their distinctive BCAA metabolic defect when stable. The natural history of A-β+ KPD is marked by chronic but varying dysregulation of BCAA metabolism.
  •  
15.
  • Jersin, R. A., et al. (author)
  • Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity, and Insulin Resistance
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:3, s. 680-695
  • Journal article (peer-reviewed)abstract
    • Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.
  •  
16.
  • Jönsson, Josefine, et al. (author)
  • Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:4, s. 854-866
  • Journal article (peer-reviewed)abstract
    • Maternal obesity may lead to epigenetic alterations in the offspring and might thereby contribute to disease later in life. We investigated whether a lifestyle intervention in pregnant women with obesity is associated with epigenetic variation in cord blood and body composition in the offspring. Genome-wide DNA methylation was analyzed in cord blood from 208 offspring from the Treatment of Obese Pregnant women (TOP)-study, which includes pregnant women with obesity randomized to lifestyle interventions comprised of physical activity with or without dietary advice versus control subjects (standard of care). DNA methylation was altered at 379 sites, annotated to 370 genes, in cord blood from offspring of mothers following a lifestyle intervention versus control subjects (false discovery rate [FDR] <5%) when using the Houseman reference-free method to correct for cell composition, and three of these sites were significant based on Bonferroni correction. These 370 genes are overrepresented in gene ontology terms, including response to fatty acids and adipose tissue development. Offspring of mothers included in a lifestyle intervention were born with more lean mass compared with control subjects. Methylation at 17 sites, annotated to, for example, DISC1, GBX2, HERC2, and HUWE1, partially mediates the effect of the lifestyle intervention on lean mass in the offspring (FDR <5%). Moreover, 22 methylation sites were associated with offspring BMI z scores during the first 3 years of life (P < 0.05). Overall, lifestyle interventions in pregnant women with obesity are associated with epigenetic changes in offspring, potentially influencing the offspring's lean mass and early growth.
  •  
17.
  • Lernmark, Åke (author)
  • Etiology of Autoimmune Islet Disease : Timing Is Everything
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:7, s. 1431-1439
  • Journal article (peer-reviewed)abstract
    • Life is about timing.-Carl LewisThe understanding of autoimmune type 1 diabetes is increasing, and examining etiology separate from pathogenesis has become crucial. The components to explain type 1 diabetes development have been known for some time. The strong association with HLA has been researched for nearly 50 years. Genome-wide association studies added another 60+ non-HLA genetic factors with minor contribution to risk. Insulitis has long been known to be present close to clinical diagnosis. T and B cells recognizing β-cell autoantigens are detectable prior to diagnosis and in newly diagnosed patients. Islet autoantibody tests against four major autoantigens have been standardized and used as biomarkers of islet autoimmunity. However, to clarify the etiology would require attention to time. Etiology may be defined as the cause of a disease (i.e., type 1 diabetes) or abnormal condition (i.e., islet autoimmunity). Timing is everything, as neither the prodrome of islet autoimmunity nor the clinical onset of type 1 diabetes tells us much about the etiology. Rather, the islet autoantibody that appears first and persists would mark the diagnosis of an autoimmune islet disease (AID). Events after the diagnosis of AID would represent the pathogenesis. Several islet autoantibodies without (stage 1) or with impaired glucose tolerance (stage 2) or with symptoms (stage 3) would define the pathogenesis culminating in clinical type 1 diabetes. Etiology would be about the timing of events that take place before the first-appearing islet autoantibody.
  •  
18.
  • Li, Qian, et al. (author)
  • Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:3, s. 465-476
  • Journal article (peer-reviewed)abstract
    • Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children's plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and γ-aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.
  •  
19.
  • Li, Qian, et al. (author)
  • Plasma Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes : the TEDDY Study
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:1, s. 282-292
  • Journal article (peer-reviewed)abstract
    • Children's plasma metabolome, especially lipidome reflects gene regulation and dietary exposures, heralding the development of islet autoantibodies (IA) and type 1 diabetes (T1D). The TEDDY study enrolled 8676 newborns by screening HLA-DR-DQ genotypes at six clinical centers in four countries; profiled metabolome and measured concentrations of ascorbic acid, 25-hydroxyvitamin D (25(OH)D), erythrocyte membrane fatty acids following birth until IA seroconversion under nested case-control design. We grouped children having an initial autoantibody only against insulin (IAA-first) or glutamic acid decarboxylase (GADA-first) by unsupervised clustering of temporal lipidome, identifying a subgroup of children having early onset of each initial autoantibody, i.e., IAA-first by 12 months and GADA-first by 21 months, consistent with population-wide early seroconversion age. Differential analysis showed that infants having reduced plasma ascorbic acid and cholesterol experienced IAA-first earlier, while early onset of GADA-first was preceded by reduced sphingomyelins at infancy. Plasma 25(OH)D prior to either autoantibody was lower in T1D progressors compared to non-progressors, with simultaneous lower diglycerides, lysophosphatidylcholines, triglycerides, alanine before GADA-first. Plasma ascorbic acid and 25(OH)D at infancy were lower in HLA-DR3/DR4 children among IA cases but not in matched controls, implying gene expression dysregulation of circulating vitamins as latent signals for IA or T1D progression.
  •  
20.
  • Lund, M. L., et al. (author)
  • L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:4, s. 614-623
  • Journal article (peer-reviewed)abstract
    • Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein-coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1. L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1-dependent and serotonin-mediated mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view