SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Domingo G) "

Search: WFRF:(Domingo G)

  • Result 11-20 of 147
Sort/group result
   
EnumerationReferenceCoverFind
11.
  •  
12.
  • Akkoyun, S., et al. (author)
  • AGATA - Advanced GAmma Tracking Array
  • 2012
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087 .- 1872-9576. ; 668, s. 26-58
  • Journal article (peer-reviewed)abstract
    • The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector- response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. © 2011 Elsevier B.V. All rights reserved.
  •  
13.
  •  
14.
  • Pantazis, N, et al. (author)
  • Determining the likely place of HIV acquisition for migrants in Europe combining subject-specific information and biomarkers data
  • 2019
  • In: Statistical methods in medical research. - : SAGE Publications. - 1477-0334 .- 0962-2802. ; 28:7, s. 1979-1997
  • Journal article (peer-reviewed)abstract
    • In most HIV-positive individuals, infection time is only known to lie between the time an individual started being at risk for HIV and diagnosis time. However, a more accurate estimate of infection time is very important in certain cases. For example, one of the objectives of the Advancing Migrant Access to Health Services in Europe (aMASE) study was to determine if HIV-positive migrants, diagnosed in Europe, were infected pre- or post-migration. We propose a method to derive subject-specific estimates of unknown infection times using information from HIV biomarkers’ measurements, demographic, clinical, and behavioral data. We assume that CD4 cell count (CD4) and HIV-RNA viral load trends after HIV infection follow a bivariate linear mixed model. Using post-diagnosis CD4 and viral load measurements and applying the Bayes’ rule, we derived the posterior distribution of the HIV infection time, whereas the prior distribution was informed by AIDS status at diagnosis and behavioral data. Parameters of the CD4–viral load and time-to-AIDS models were estimated using data from a large study of individuals with known HIV infection times (CASCADE). Simulations showed substantial predictive ability (e.g. 84% of the infections were correctly classified as pre- or post-migration). Application to the aMASE study ( n = 2009) showed that 47% of African migrants and 67% to 72% of migrants from other regions were most likely infected post-migration. Applying a Bayesian method based on bivariate modeling of CD4 and viral load, and subject-specific information, we found that the majority of HIV-positive migrants in aMASE were most likely infected after their migration to Europe.
  •  
15.
  • Dupont, E., et al. (author)
  • Overview of the dissemination of n_TOF experimental data and resonance parameters
  • 2023
  • In: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Conference paper (peer-reviewed)abstract
    • The n_TOF neutron time-of-flight facility at CERN is used for nuclear data measurements. The n_TOF Collaboration works closely with the Nuclear Reaction Data Centres (NRDC) network to disseminate the experimental data through the international EXFOR library. In addition, the Collaboration helps integrate the results in the evaluated library projects. The present contribution describes the dissemination status of n_TOF results, their impact on evaluated libraries and ongoing efforts to provide n_TOF resonance parameters in ENDF-6 format for further use by evaluation projects.
  •  
16.
  • Tagliente, G., et al. (author)
  • The n_TOF facility at CERN
  • 2024
  • In: 16<sup>th</sup> Varenna Conference on Nuclear Reaction Mechanisms (NRM2023). - : EDP Sciences. - 9782759891245
  • Conference paper (peer-reviewed)abstract
    • The neutron Time-of-Flight facility (n_TOF) is an innovative facility operative since 2001 at CERN, with three experimental areas. In this paper the n_TOF facility will be described, together with the upgrade of the facility during the Long Shutdown 2 at CERN. The main features of the detectors used for capture fission cross section measurements will be presented with perspectives for the future measurements.
  •  
17.
  • Alcayne, V., et al. (author)
  • A Segmented Total Energy Detector (sTED) optimized for (n,ϒ) cross-section measurements at n_TOF EAR2
  • 2024
  • In: Radiation Physics and Chemistry. - : Elsevier. - 0969-806X .- 1879-0895. ; 217
  • Journal article (peer-reviewed)abstract
    • The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.
  •  
18.
  •  
19.
  • Balibrea-Correa, J., et al. (author)
  • First measurement of the 94Nb(n,γ) cross section at the CERN n_TOF facility
  • 2023
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Journal article (peer-reviewed)abstract
    • One of the crucial ingredients for the improvement of stellar models is the accurate knowledge of neutron capture cross-sections for the different isotopes involved in the s-,r- and i- processes. These measurements can shed light on existing discrepancies between observed and predicted isotopic abundances and help to constrain the physical conditions where these reactions take place along different stages of stellar evolution.In the particular case of the radioactive 94Nb, the 94Nb(n,γ) cross-section could play a role in the determination of the s-process production of 94Mo in AGB stars, which presently cannot be reproduced by state-of-the-art stellar models. There are no previous 94Nb(n,γ) experimental data for the resolved and unresolved resonance regions mainly due to the difficulties in producing highquality samples and also due to limitations in conventional detection systems commonly used in time-of-flight experiments.Motivated by this situation, a first measurement of the 94Nb(n,γ) reaction was carried out at CERN n_TOF, thereby exploiting the high luminosity of the EAR2 area in combination with a new detection system of small-volume C6D6-detectors and a high quality 94Nb-sample. The latter was based on hyper-pure 93Nb material activated at the high-flux reactor of ILL-Grenoble. An innovative ring-configuration detection system in close geometry around the capture sample allowed us to significantly enhance the signal-to-background ratio. This set-up was supplemented with two conventional C6D6-detectors and a highresolution LaCl3(Ce)-detector, which will be employed for addressing reliably systematic effects and uncertainties.At the current status of the data analysis, 18 resonance in 94Nb+n have been observed for the first time in the neutron energy range from thermal up to 10 keV.
  •  
20.
  • Domingo-Pardo, C., et al. (author)
  • Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF
  • 2023
  • In: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:1
  • Journal article (peer-reviewed)abstract
    • This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 147
Type of publication
journal article (114)
conference paper (23)
research review (1)
Type of content
peer-reviewed (133)
other academic/artistic (5)
Author/Editor
Domingo-Pardo, C (83)
Gottardo, A. (41)
Podolyak, Zs. (39)
Gerl, J. (37)
Goel, N. (37)
Valiente-Dobón, J. J ... (35)
show more...
Boutachkov, P. (35)
Pietri, S. (35)
Reiter, P. (35)
Reifarth, R (33)
Mengoni, D. (33)
Benzoni, G. (33)
Leoni, S. (33)
Menegazzo, R. (33)
Gorska, M. (33)
Kurz, N (32)
Wollersheim, H.J. (32)
Napoli, D. R. (32)
Gadea, A. (31)
Schaffner, H. (31)
Nociforo, C. (31)
Cerutti, F. (30)
Andrzejewski, J (30)
Cano-Ott, D (30)
Chiaveri, E (30)
Colonna, N (30)
Gunsing, F (30)
Jericha, E (30)
Mengoni, A (30)
Milazzo, P M (30)
Rubbia, C (30)
Tagliente, G (30)
Vaz, P (30)
Vlachoudis, V (30)
Kojouharov, I. (30)
Million, B. (30)
Prochazka, A. (30)
Kadi, Y (29)
Recchia, F. (29)
Calviani, M. (29)
Weick, H. (29)
Berthoumieux, E. (29)
Mastromarco, M. (28)
Duran, I (28)
Tarrío, Diego (28)
Grebosz, J. (28)
Mendoza, E. (28)
Bosnar, D. (28)
Diakaki, M. (28)
Guerrero, C. (28)
show less...
University
Uppsala University (66)
Lund University (48)
Karolinska Institutet (39)
Royal Institute of Technology (26)
Chalmers University of Technology (5)
Stockholm University (4)
show more...
University of Gothenburg (3)
Umeå University (2)
Linnaeus University (2)
Högskolan Dalarna (2)
Örebro University (1)
Linköping University (1)
Swedish Museum of Natural History (1)
show less...
Language
English (147)
Research subject (UKÄ/SCB)
Natural sciences (94)
Medical and Health Sciences (18)
Engineering and Technology (2)
Humanities (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view