SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) "

Sökning: WFRF:(Fu Yifeng 1984)

  • Resultat 61-70 av 104
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Liu, Johan, 1960, et al. (författare)
  • CHEMICALLY VAPOR DEPOSITED CARBON NANOTUBES FOR VERTICAL ELECTRONICS INTERCONNECT IN PACKAGING APPLICATIONS
  • 2014
  • Ingår i: Proceedings of the 12th international conference on Solid States and Integrated Circuits, ICSICT2014. - 9781479932962 ; , s. 47-50
  • Konferensbidrag (refereegranskat)abstract
    • Carbon Nanotubes (CNTs) have excellent electrical, thermal and mechanical properties. They are mechanically strong at nanoscale yet also flexible if made micro- or milli-meter long. They are synthesized from nano-sized catalyst particles and can be made up to millimeters. A lot of research studies have been spent on various properties of the CNTs. They are regarded as an alternative material in a lot of applications such as ICs, MEMS, sensors, biomedical and other composite materials, etc. Among them, the thermally grown CNTs using chemical vapor deposition method is of particular interested in electronics applications as an interconnect material. This paper reviews the use of CNTs as an interconnect material for packaging applications. The growth and post-growth processing of CNTs are covered and the tailoring of CNTs properties, i.e. electrical resistivity, thermal conductivity and strength, etc., is discussed. To make the electronics systems smaller, faster and more power efficient, CNTs as a potential new material are likely to provide the solution to the future challenges as the electronics systems are getting more and more functional and complex nowadays.
  •  
62.
  •  
63.
  • Liu, Johan, 1960, et al. (författare)
  • Use of carbon nanotubes in potential electronics packaging applications
  • 2010
  • Ingår i: 2010 10th IEEE Conference on Nanotechnology, NANO 2010. - 9781424470334 ; , s. 160-166
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Packaging of electronics is an important technology to interconnect, power, cool and protect the components in highly integrated systems. Continuous size shrinking and function integration of future electronics are expected to be driven mainly by the advances in packaging technology. Carbon nanotubes (CNTs) are proposed for many novel packaging solutions thanks to their unique electrical, thermal, and mechanical properties. This paper introduces potential use of CNTs in electronics packaging, in both interconnection and thermal management applications. The challenges of fully exploiting the great potential of CNTs in this field are also discussed.
  •  
64.
  • Liu, Ya, 1991, et al. (författare)
  • Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:37, s. 18267-18275
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a simple and scalable strategy to obtain N, S and Si co-doped biocompatible graphene foams (GFs) with different shapes using egg albumen as the template. The unique porous structure and element doping endow the GFs with a high charge-discharge rate and good wettability, which largely improve the electrochemical performance of the electrodes, including ultrahigh specific capacitance (534 F g-1at 1 A g-1), and excellent rate capability (308 F g-1at 100 A g-1) and cycling performance (96.1% retention of the initial capacitance after 10000 cycles at a high current density of 10 A g-1). Besides, when used as an electrochemical sensor for dopamine, the GF exhibits a detection limit as low as 1.2 μM with a linear response up to 70 μM, due to the low equivalent series resistance. These reveal great potential for promoting the application of 3D graphene in energy storage and electrochemical sensors.
  •  
65.
  • Liu, Ya, 1991, et al. (författare)
  • Graphene based thermal management system for battery cooling in electric vehicles
  • 2020
  • Ingår i: Proceedings - 2020 IEEE 8th Electronics System-Integration Technology Conference, ESTC 2020.
  • Konferensbidrag (refereegranskat)abstract
    • In this work, a graphene assembled film integrated heat sink and water cooling technology was used to build an experimental set-up of a thermal management system to demonstrate the possibility to achieve efficient cooling of the propulsion battery in electric vehicles. The experimental results showed that the temperature decrease of a Li-ion battery module can reach 11°C and 9 °C under discharge rates as of 2C and 1C, respectively. The calculated thermal resistance of the graphene based cooling system is about 76% of a similar copper based cooling system. Surface modification was carried out on the graphene sheet to achieve a reliable bonding between the graphene sheet and the battery cell surface. This work provides a proof of concept of a new highly efficient approach for electric vehicle battery thermal management using the light-weight material graphene.
  •  
66.
  • Mehta, Ankit Nalin, et al. (författare)
  • Understanding noninvasive charge transfer doping of graphene: a comparative study
  • 2018
  • Ingår i: Journal of Materials Science: Materials in Electronics. - : Springer Science and Business Media LLC. - 1573-482X .- 0957-4522. ; 29:7, s. 5239-5252
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we systematically investigate and compare noninvasive doping of chemical vapor deposition graphene with three molecule dopants through spectroscopy and electrical conductivity techniques. Thionyl chloride shows the smallest improvement in conductivity with poor temporal and thermal stability and nitric acid induces the biggest sheet resistance reduction with modified stability. Molybdenum trioxide doping stands out, after thermal annealing, with both causing a significant sheet-resistance reduction and having superior temporal and thermal stability. These properties make it ideal for applications in advanced electronics. Theoretical studies based on the van der Waals density functional method suggest that cluster formation of molybdenum trioxide underpins the significant reduction in sheet resistance, and the stability, that arises after thermal annealing. Our comparative study clarifies charge transfer doping of graphene and brings understanding of the weak-interaction nature of such non-destructive doping of graphene. Our work also shows that we can use weak chemisorption to tailor the electronic properties of graphene, for example, to improve conductivity. This ability open up possibilities for further use of graphene in electronic interconnects, field effect transistors and other systems.
  •  
67.
  • Mu, Wei, 1985, et al. (författare)
  • Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor
  • 2016
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 304:15 November 2016, s. 106-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Bilayer graphene is attractive for digital device applications due to the appearance of a bandgap under application of an electrical displacement field. Controllable and fast synthesis of bilayer graphene on copper by chemical vapor deposition is considered a crucial process from the perspective of industrial applications. Here, a systematic investigation of the influence of process parameters on the growth of bilayer graphene by chemical vapor deposition in a low pressure cold wall reactor is presented. In this study, the initial process stages have been of particular interest. We have found that the influence of the hydrogen partial pressure on synthesis is completely the opposite from that found for traditional tubular quartz CVD in terms of its influence on the graphene growth rate. H2/CH4 ratio was also found to effectively influence the properties of the synthesized bilayer graphene in terms of its atomic structure, whether it be AB-stacked or misoriented. Different pre-treatments of the copper foil, in combination with different annealing processes, were used to investigate the nucleation process with the aim of improving the controllability of the synthesis process. Based on an analysis of the nucleation activity, adsorption-diffusion and gas-phase penetration were employed to illustrate the synthesis mechanism of bilayer graphene on copper foil. After optimization of the synthesis process, large areas, up to 90% of a copper foil, were covered by bilayer graphene within 15 minutes. The total process time is only 45 minutes, including temperature ramp-up and cool-down by using a low pressure cold wall CVD reactor.
  •  
68.
  • Mu, Wei, 1985, et al. (författare)
  • Double-Densified VerticallyAligned Carbon Nanotube Bundles for Application in 3D Integration High Aspect Ratio TSV Interconnects
  • 2016
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781509012046 ; , s. 211-216
  • Konferensbidrag (refereegranskat)abstract
    • The treatment of densification by vapor on pristineMWCNT bundles are necessary to improve the effective area of the CNT TSV. However, the CNT bundles might tilt partly because of the non-uniform densification at root of the bundle, especially when it comes to the high aspect ratio CNT bundles. In order to solve these problems, a double densification process has been proposed and developed here. First of all, the shape of partial densified CNT bundles were optimized as a function of time. After several steps such as transferring of partial densified CNT bundles into the via, second densification, epoxy filling and chemical mechanical polishing, the CNT filled TSV with aspect ratio of 10 was achieved. The current voltage response of the CNT TSV interconnection indicated good electrical connection was formed. The resistivity of CNT bundles in via was calculated to be around 2-3 milli-ohmcm.
  •  
69.
  • Mu, Wei, 1985, et al. (författare)
  • Enhanced Cold Wall CVD Reactor Growth of Horizontally Aligned Single-walled Carbon Nanotubes
  • 2016
  • Ingår i: Electronic Materials Letters. - : Springer Science and Business Media LLC. - 1738-8090 .- 2093-6788. ; 12:3, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT’s growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1-2 tubes/μm with high growth quality as shown by Raman analysis.
  •  
70.
  • Mu, Wei, 1985, et al. (författare)
  • Large area and uniform monolayer graphene CVD growth on oxidized copper in a cold wall reactor
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Graphene growth on copper in cold wall chemical vapor deposition (CVD) is not an inherently self- limiting process, which means that adlayers appear as long as there is sufficient growth time. The growth of large area and uniform monolayer becomes crucial and imminent. In this study, the pre-Treatment of oxidation was employed on copper. The results have shown that oxidation pre-Treatment in combination with argon annealing process would not only decrease the density of nucleation site, but also suppress the activity of nucleation site for the multilayer graphene growth. Therefore, large area and uniform monolayer graphene was obtained. The characterization of SEM. AFM and Raman analysis was also performed on either pristine graphene copper or transferred graphene on silicon oxide substrate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 104

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy