SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1354 1013 OR L773:1365 2486 "

Sökning: L773:1354 1013 OR L773:1365 2486

  • Resultat 1-10 av 481
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agrell, Jep, et al. (författare)
  • CO2 and O-3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria)
  • 2005
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 11:4, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated levels of CO2 and O-3 affect plant growth and phytochemistry, which in turn can alter physiological performance of associated herbivores. Little is known, however, about how generalist insect herbivores respond behaviorally to CO2- and O-3-mediated changes in their host plants. This research examined the effects of elevated CO2 and O-3 levels on host plant preferences and consumption of forest tent caterpillar (FTC, Malacosoma disstria Hbn.) larvae. Dual choice feeding assays were performed with foliage from birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx., genotypes 216 and 259). Trees were grown at the Aspen Free Air CO2 Enrichment (FACE) facility near Rhinelander, WI, USA, and had been exposed to ambient or elevated concentrations of CO2 and/or O-3. Levels of nutritional and secondary compounds were quantified through phytochemical analyses. The results showed that elevated O-3 levels increased FTC larval preferences for birch compared with aspen, whereas elevated CO2 levels had the opposite effect. In assays with the two aspen genotypes, addition of both CO2 and O-3 caused a shift in feeding preferences from genotype 259 to genotype 216. Consumption was unaffected by experimental treatments in assays comparing aspen and birch, but were increased for larvae given high O-3 foliage in the aspen genotype assays. Elevated levels of CO2 and O-3 altered tree phytochemistry, but did not explain shifts in feeding preferences. The results demonstrate that increased levels of CO2 and O-3 can alter insect host plant preferences both between and within tree species. Also, consequences of altered host quality (e.g., compensatory consumption) may be buffered by partial host shifts in situations when alternative plant species are available. Environmentally induced changes in host plant preferences may have the potential to alter the distribution of herbivory across plant genotypes and species, as well as competitive interactions among them.
  •  
2.
  • Bondeau, Alberte, et al. (författare)
  • Modelling the role of agriculture for the 20th century global terrestrial carbon balance
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:3, s. 679-706
  • Forskningsöversikt (refereegranskat)abstract
    • In order to better assess the role of agriculture within the global climate-vegetation system, we present a model of the managed planetary land surface, Lund-Potsdam-Jena managed Land (LPJmL), which simulates biophysical and biogeochemical processes as well as productivity and yield of the most important crops worldwide, using a concept of crop functional types (CFTs). Based on the LPJ-Dynamic Global Vegetation Model, LPJmL simulates the transient changes in carbon and water cycles due to land use, the specific phenology and seasonal CO2 fluxes of agricultural-dominated areas, and the production of crops and grazing land. It uses 13 CFTs (11 arable crops and two managed grass types), with specific parameterizations of phenology connected to leaf area development. Carbon is allocated daily towards four carbon pools, one being the yield-bearing storage organs. Management (irrigation, treatment of residues, intercropping) can be considered in order to capture their effect on productivity, on soil organic carbon and on carbon extracted from the ecosystem. For transient simulations for the 20th century, a global historical land use data set was developed, providing the annual cover fraction of the 13 CFTs, rain-fed and/or irrigated, within 0.5 degrees grid cells for the period 1901-2000, using published data on land use, crop distributions and irrigated areas. Several key results are compared with observations. The simulated spatial distribution of sowing dates for temperate cereals is comparable with the reported crop calendars. The simulated seasonal canopy development agrees better with satellite observations when actual cropland distribution is taken into account. Simulated yields for temperate cereals and maize compare well with FAO statistics. Monthly carbon fluxes measured at three agricultural sites also compare well with simulations. Global simulations indicate a similar to 24% (respectively similar to 10%) reduction in global vegetation (respectively soil) carbon due to agriculture, and 6-9 Pg C of yearly harvested biomass in the 1990s. In contrast to simulations of the potential natural vegetation showing the land biosphere to be an increasing carbon sink during the 20th century, LPJmL simulates a net carbon source until the 1970s (due to land use), and a small sink (mostly due to changing climate and CO2) after 1970. This is comparable with earlier LPJ simulations using a more simple land use scheme, and within the uncertainty range of estimates in the 1980s and 1990s. The fluxes attributed to land use change compare well with Houghton's estimates on the land use related fluxes until the 1970s, but then they begin to diverge, probably due to the different rates of deforestation considered. The simulated impacts of agriculture on the global water cycle for the 1990s are similar to 5% (respectively similar to 20%) reduction in transpiration (respectively interception), and similar to 44% increase in evaporation. Global runoff, which includes a simple irrigation scheme, is practically not affected.
  •  
3.
  •  
4.
  • Friend, Andrew D., et al. (författare)
  • FLUXNET and modelling the global carbon cycle
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:3, s. 610-633
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source-sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model-data comparison. Flux measurements made over four vegetation types were used to calibrate the land-surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land-surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite-measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982-1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of -1.2 Pg [C] yr(-1) for 1982-1995 is compatible with the PEM- and DGVM-predicted trends in NPP. There is, thus, a convergence in understanding derived from process-based models, remote-sensing-based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night-time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land-atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.
  •  
5.
  • Haapala, Jaana K., et al. (författare)
  • Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiation
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 15:4, s. 943-954
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of elevated UV-B radiation on CO2 exchange of a natural flark fen was studied in open-field conditions during 2003-2005. The experimental site was located in SodankylA in northern Finland (67 degrees 22'N, 26 degrees 38'E, 179 m a.s.l.). Altogether 30 study plots, each 120 cm x 120 cm in size, were randomly distributed between three treatments (n=10): ambient control, UV-A control and UV-B treatment. The UV-B-treated plots were exposed to elevated UV-B radiation level for three growing seasons. The instantaneous net ecosystem CO2 exchange (NEE) and dark respiration (R-TOT) were measured during the growing season using a closed chamber method. The wintertime CO2 emissions were estimated using a gradient technique by analyzing the CO2 concentration in the snow pack. In addition to the instantaneous CO2 exchange, the seasonal CO2 balances during the growing seasons were modeled using environmental data measured at the site. In general, the instantaneous NEE at light saturation was slightly higher in the UV-B treatment compared with the ambient control, but the gross photosynthesis was unaffected by the exposure. The R-TOT was significantly lower under elevated UV-B in the third study year. The modeled seasonal (June-September) CO2 balance varied between the years depending on the ground water level and temperature conditions. During the driest year, the seasonal CO2 balance was negative (net release of CO2) in the ambient control and the UV-B treatment was CO2 neutral. During the third year, the seasonal CO2 uptake was 43 +/- 36 g CO2-C m(-2) in the ambient control and 79 +/- 45 g CO2-C m(-2) in the UV-B treatment. The results suggest that the long-term exposure to high UV-B radiation levels may slightly increase the CO2 accumulation to fens resulting from a decrease in microbial activity in peat. However, it is unlikely that the predicted development of the level of UV-B radiation would significantly affect the CO2 balance of fen ecosystems in future.
  •  
6.
  • Jardine, Kolby J., et al. (författare)
  • Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18:3, s. 973-984
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.
  •  
7.
  • Johansson, T, et al. (författare)
  • Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
  • 2006
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 12:12, s. 2352-2369
  • Tidskriftsartikel (refereegranskat)abstract
    • Thawing permafrost in the sub-Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub-Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet-growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100-year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.
  •  
8.
  • Jönsson, Anna Maria, et al. (författare)
  • Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 15:2, s. 486-499
  • Tidskriftsartikel (refereegranskat)abstract
    • The spruce bark beetle Ips typographus is one of the major insect pests of mature Norway spruce forests. In this study, a model describing the temperature-dependent thresholds for swarming activity and temperature requirement for development from egg to adult was driven by transient regional climate scenario data for Sweden, covering the period of 1961-2100 for three future climate change scenarios (SRES A2, A1B and B2). During the 20th century, the weather supported the production of one bark beetle generation per year, except in the north-western mountainous parts of Sweden where the climate conditions were too harsh. A warmer climate may sustain a viable population also in the mountainous part; however, the distributional range of I. typographus may be restricted by the migration speed of Norway spruce. Modelling suggests that an earlier timing of spring swarming and fulfilled development of the first generation will significantly increase the frequency of summer swarming. Model calculations suggest that the spruce bark beetle will be able to initiate a second generation in South Sweden during 50% of the years around the mid century. By the end of the century, when temperatures during the bark beetle activity period are projected to have increased by 2.4-3.8 degrees C, a second generation will be initiated in South Sweden in 63-81% of the years. The corresponding figures are 16-33% for Mid Sweden, and 1-6% for North Sweden. During the next decades, one to two generations per year are predicted in response to temperature, and the northern distribution limit for the second generation will vary. Our study addresses questions applicable to sustainable forest management, suggesting that adequate countermeasures require monitoring of regional differences in timing of swarming and development of I. typographus, and planning of control operations during summer periods with large populations of bark beetles.
  •  
9.
  • Kasurinen, A, et al. (författare)
  • Below-ground responses of silver birch trees exposed to elevated CO2 and O-3 levels during three growing seasons
  • 2005
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 11:7, s. 1167-1179
  • Tidskriftsartikel (refereegranskat)abstract
    • Field-growing silver birch (Betula pendula Roth) clones (clone 4 and 80) were exposed to elevated CO2 and O-3 in open-top chambers for three consecutive growing seasons (1999-2001). At the beginning of the OTC experiment, all trees were 7 years old. We studied the single and interaction effects of CO2 and O-3 on silver birch below-ground carbon pools (i.e. effects on fine roots and mycorrhizas, soil microbial communities and sporocarp production) and also assessed whether there are any clonal differences in these below-ground CO2 and O-3 responses. The total mycorrhizal infection level of both clones was stimulated by elevated CO2 alone and elevated O-3 alone, but not when elevated CO2 was used in fumigation in combination with elevated O-3. In both clones, elevated CO2 affected negatively light brown/orange mycorrhizas, while its effect on other mycorrhizal morphotypes was negligible. Elevated O-3, instead, clearly decreased the proportions of black and liver-brown mycorrhizas and increased that of light brown/orange mycorrhizas. Elevated O-3 had a tendency to decrease standing fine root mass and sporocarp production as well, both of these O-3 effects mainly manifesting in clone 4 trees. CO2 and O-3 treatment effects on soil microbial community composition (PLFA, 2- and 3-OH-FA profiles) were negligible, but quantitative PLFA data showed that in 2001 the PLFA fungi : bacteria-ratio of clone 80 trees was marginally increased because of elevated CO2 treatments. This study shows that O-3 effects were most clearly visible at the mycorrhizal root level and that some clonal differences in CO2 and O-3 responses were observable in the below-ground carbon pools. In conclusion, the present data suggests that CO2 effects were minor, whereas increasing tropospheric O-3 levels can be an important stress factor in northern birch forests, as they might alter mycorrhizal morphotype assemblages, mycorrhizal infection rates and sporocarp production.
  •  
10.
  • Kokfelt, Ulla, et al. (författare)
  • Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 15:7, s. 1652-1663
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent accelerated decay of discontinuous permafrost at the Stordalen Mire in northern Sweden has been attributed to increased temperature and snow depth, and has caused expansion of wet minerotrophic areas leading to significant changes in carbon cycling in the mire. In order to track these changes through time and evaluate potential forcing mechanisms, this paper analyses a peat succession and a lake sediment sequence from within the mire, providing a record for the last 100 years, and compares these with monitored climate and active layer thickness data. The peat core was analysed for testate amoebae to reconstruct changes in peatland surface moisture conditions and water table fluctuations. The lake sediment core was analysed by near infrared spectroscopy to infer changes in the total organic carbon (TOC) concentration of the lake-water, and changes in δ13C and C, N and δ15N to track changes in the dissolved inorganic carbon (DIC) pool and the influence of diagenetic effects on sediment organic matter, respectively. Results showed that major shifts towards increased peat surface moisture and TOC concentration of the lake-water occurred around 1980, one to two decades earlier than a temperature driven increase in active layer thickness. Comparison with monitored temperature and precipitation from a nearby climate station indicates that this change in peat surface moisture is related to June–September (JJAS) precipitation and that the increase in lake-water TOC concentration reflects an increase in total annual precipitation. A significant depletion in 13C of sediment organic matter in the early 1980s probably reflects the effect of a single or a few consecutive years with anomalously high summer precipitation, resulting in elevated DIC content of the lake water, predominantly originating from increased export and subsequent respiration of organic carbon from the mire. Based on these results, it was not possible to link proxy data obtained on peat and lake-sediment records directly to permafrost decay. Instead our data indicate that increased precipitation and anomalously high rainfall during summers had a significant impact on the mire and the adjacent lake ecosystem. We therefore propose that effects of increased precipitation should be considered when evaluating potential forcing mechanisms of recent changes in carbon cycling in the subarctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 481
Typ av publikation
tidskriftsartikel (442)
forskningsöversikt (38)
annan publikation (1)
Typ av innehåll
refereegranskat (470)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Nilsson, Mats (22)
Peichl, Matthias (16)
Lindroth, Anders (14)
Smith, Benjamin (14)
Laudon, Hjalmar (13)
Arneth, Almut (13)
visa fler...
Rousk, Johannes (12)
Dorrepaal, Ellen (11)
Ciais, Philippe (10)
Weyhenmeyer, Gesa A. (10)
Uddling, Johan, 1972 (10)
Bastviken, David (9)
Bååth, Erland (9)
Bergström, Ann-Krist ... (9)
Brunet, Jörg (8)
Rinnan, Riikka (8)
Gundale, Michael (8)
Hylander, Kristoffer (7)
Bishop, Kevin (7)
Tagesson, Torbern (7)
Futter, Martyn (7)
Reichstein, Markus (7)
Lenoir, Jonathan (7)
Kätterer, Thomas (7)
Klemedtsson, Leif, 1 ... (7)
Aerts, Rien (7)
Öquist, Mats (7)
Olofsson, Johan (7)
Christensen, Torben (7)
Luoto, Miska (6)
De Frenne, Pieter (6)
Ciais, P. (6)
Canadell, Josep G. (6)
Pleijel, Håkan, 1958 (6)
Blenckner, Thorsten (6)
Peñuelas, Josep (6)
Aalto, Juha (5)
Tranvik, Lars J. (5)
Nordin, Annika (5)
Jackson, Robert B. (5)
Gårdmark, Anna (5)
Michelsen, Anders (5)
Linder, Sune (5)
Sobek, Sebastian (5)
Sykes, Martin (5)
Elberling, Bo (5)
Müller, Christoph (5)
Palmqvist, Kristin (5)
Karlsson, Jan, 1974- (5)
Sponseller, Ryan A. (5)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (170)
Lunds universitet (139)
Umeå universitet (82)
Stockholms universitet (65)
Göteborgs universitet (50)
Uppsala universitet (50)
visa fler...
Linnéuniversitetet (16)
Linköpings universitet (14)
Chalmers tekniska högskola (8)
Kungliga Tekniska Högskolan (4)
Karlstads universitet (4)
Högskolan i Halmstad (2)
Mittuniversitetet (2)
RISE (2)
Naturhistoriska riksmuseet (2)
IVL Svenska Miljöinstitutet (2)
Högskolan i Gävle (1)
Mälardalens universitet (1)
Jönköping University (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (480)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (418)
Lantbruksvetenskap (121)
Samhällsvetenskap (5)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy