SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Al Chalabi Ammar) "

Sökning: WFRF:(Al Chalabi Ammar)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adey, Brett N., et al. (författare)
  • Large-scale analyses of CAV1 and CAV2 suggest their expression is higher in post-mortem ALS brain tissue and affects survival
  • 2023
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media S.A.. - 1662-5102. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts.Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype.Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days.Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
3.
  • Dilliott, Allison A., et al. (författare)
  • Clinical testing panels for ALS : global distribution, consistency, and challenges
  • 2023
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Taylor & Francis. - 2167-8421 .- 2167-9223. ; 24:5-6, s. 420-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS.Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests.Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes.Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.
  •  
4.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
5.
  • Iacoangeli, Alfredo, et al. (författare)
  • SCFD1 expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed
  • 2021
  • Ingår i: Brain Communications. - : Oxford University Press. - 2632-1297. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence indicates that common variants found in genome-wide association studies increase risk of disease through gene regulation via expression Quantitative Trait Loci. Using multiple genome-wide methods, we examined if Single Nucleotide Polymorphisms increase risk of Amyotrophic Lateral Sclerosis through expression Quantitative Trait Loci, and whether expression Quantitative Trait Loci expression is consistent across people who had Amyotrophic Lateral Sclerosis and those who did not. In combining public expression Quantitative Trait Loci data with Amyotrophic Lateral Sclerosis genome-wide association studies, we used Summary-data-based Mendelian Randomization to confirm that SCFD1 was the only gene that was genome-wide significant in mediating Amyotrophic Lateral Sderosis risk via expression Quantitative Trait Loci (Summary-data-based Mendelian Randomization beta = 0.20, standard error = 0.04, P-value = 4.29 x 10(-6)). Using post-mortem motor cortex, we tested whether expression Quantitative Trait Loci showed significant differences in expression between Amyotrophic Lateral Sclerosis (n= 76) and controls (n= 25), genome-wide. Of 20 757 genes analysed, the two most sign ificant expression Quantitative Trait Loci to show differential in expression between Amyotrophic Lateral Sclerosis and controls involve two known Amyotrophic Lateral Sclerosis genes (SCFD1 and VCP). Cis-acting SCFD1 expression Quantitative Trait Loci downstream of the gene showed significant differences in expression between Amyotrophic Lateral Sclerosis and controls (top expression Quantitative Trait Lod beta = 0.34, standard error = 0.063, P-value = 4.54 x 10(-7)). These SCFD1 expression Quantitative Trait Loci also significantly modified Amyotrophic Lateral Sclerosis survival (number of samples = 4265, hazard ratio = 1.11, 95% confidence interval = 1.05-1.17, P-value = 2.06 x 10(-4)) and act as an Amyotrophic Lateral Sclerosis trans-expression Quantitative Trait Loci hotspot for a wider network of genes enriched for SCFD1 function and Amyotrophic Lateral Sderosis pathways. Using gene-set analyses, we found the genes that correlate with this trans-expression Quantitative Trait Loci hotspot significantly increase risk of Amyotrophic La teral Sderosis (beta = 0.247, standard deviation = 0.017, P= 0.001) and schizophrenia (beta = 0.263, standard deviation = 0.008, P-value 1.18 x 10(-5)), a disease that genetically correlates with Amyotrophic Lateral Sclerosis. In summary, SCFD1 expression Quantitative Trait Lod are a major factor in Amyotrophic Lateral Sderosis, not only influencing disease risk but are differentially expressed in post-mortem Amyotrophic Lateral Sclerosis. SCFD1 expression Quantitative Trait Loci show distinct expression profiles in Amyotrophic Lateral Sclerosis that correlate with a wider network of genes that also confer risk of the disease and modify the disease's duration.
  •  
6.
  • Kenna, Kevin P., et al. (författare)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
7.
  • Krannich, Thomas, et al. (författare)
  • VariantSurvival : a tool to identify genotype-treatment response
  • 2023
  • Ingår i: Frontiers in Bioinformatics. - 2673-7647. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: For a number of neurological diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis, and many others, certain genes are known to be involved in the disease mechanism. A common question is whether a structural variant in any such gene may be related to drug response in clinical trials and how this relationship can contribute to the lifecycle of drug development.Results: To this end, we introduce VariantSurvival, a tool that identifies changes in survival relative to structural variants within target genes. VariantSurvival matches annotated structural variants with genes that are clinically relevant to neurological diseases. A Cox regression model determines the change in survival between the placebo and clinical trial groups with respect to the number of structural variants in the drug target genes. We demonstrate the functionality of our approach with the exemplary case of the SETX gene. VariantSurvival has a user-friendly and lightweight graphical user interface built on the shiny web application package.
  •  
8.
  • Mehta, Puja R., et al. (författare)
  • The impact of age on genetic testing decisions in amyotrophic lateral sclerosis
  • 2022
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 145:12, s. 4440-4447
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome. In up to 20% of cases, a family history is observed. Although Mendelian disease gene variants are found in apparently sporadic ALS, genetic testing is usually restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the probability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar.Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result estimated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such results missed by restricting testing by age of onset according to UK's National Genomic Test Directory criteria.There were 6274 people with sporadic ALS, 1551 from the UK. The proportion with a clinically actionable genetic test result ranged between 0.21 [95% confidence interval (CI) 0.18-0.25] in the youngest age group to 0.15 (95% CI 0.13-0.17) in the oldest age group for a full gene panel. For the UK, the equivalent proportions were 0.23 (95% CI 0.13-0.33) in the youngest age group to 0.17 (95% CI 0.13-0.21) in the oldest age group. By limiting testing in those without a family history to people with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%-101%) clinically actionable test results were missed.There is a significant probability of a clinically actionable genetic test result in people with apparently sporadic ALS at all ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test results. Age of onset and family history should not be a barrier to genetic testing in ALS.
  •  
9.
  • Nicolas, Aude, et al. (författare)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • Ingår i: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
10.
  • Smith, Bradley N., et al. (författare)
  • The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder
  • 2013
  • Ingår i: European Journal of Human Genetics. - London : Nature Publishing Group. - 1018-4813 .- 1476-5438. ; 21:1, s. 102-108
  • Tidskriftsartikel (refereegranskat)abstract
    • A massive hexanucleotide repeat expansion mutation (HREM) in C9ORF72 has recently been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we describe the frequency, origin and stability of this mutation in ALS+/-FTD from five European cohorts (total n = 1347). Single-nucleotide polymorphisms defining the risk haplotype in linked kindreds were genotyped in cases (n = 434) and controls (n = 856). Haplotypes were analysed using PLINK and aged using DMLE+. In a London clinic cohort, the HREM was the most common mutation in familial ALS+/-FTD: C9ORF72 29/112 (26%), SOD1 27/112 (24%), TARDBP 1/112 (1%) and FUS 4/112 (4%) and detected in 13/216 (6%) of unselected sporadic ALS cases but was rare in controls (3/856, 0.3%). HREM prevalence was high for familial ALS+/-FTD throughout Europe: Belgium 19/22 (86%), Sweden 30/41 (73%), the Netherlands 10/27 (37%) and Italy 4/20 (20%). The HREM did not affect the age at onset or survival of ALS patients. Haplotype analysis identified a common founder in all 137 HREM carriers that arose around 6300 years ago. The haplotype from which the HREM arose is intrinsically unstable with an increased number of repeats (average 8, compared with 2 for controls, P<10(-8)). We conclude that the HREM has a single founder and is the most common mutation in familial and sporadic ALS in Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51
Typ av publikation
tidskriftsartikel (49)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (49)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Al-Chalabi, Ammar (51)
van den Berg, Leonar ... (30)
Andersen, Peter M. (25)
Hardiman, Orla (25)
van Damme, Philip (23)
Veldink, Jan H. (23)
visa fler...
Robberecht, Wim (23)
Shaw, Christopher E. (22)
Silani, Vincenzo (19)
Shaw, Pamela J. (19)
Landers, John E. (19)
van Es, Michael A (19)
Morrison, Karen E. (17)
van Rheenen, Wouter (17)
Andersen, Peter M., ... (16)
Shatunov, Aleksey (15)
Weber, Markus (14)
Chio, Adriano (14)
Fogh, Isabella (13)
Glass, Jonathan D. (13)
Ticozzi, Nicola (12)
de Carvalho, Mamede (10)
Leigh, P. Nigel (10)
Corcia, Philippe (9)
Ratti, Antonia (9)
Ludolph, Albert C. (9)
McLaughlin, Russell ... (9)
Meininger, Vincent (8)
Diekstra, Frank P (8)
Brown, Robert H (8)
Calvo, Andrea (8)
Gellera, Cinzia (8)
Couratier, Philippe (7)
Iacoangeli, Alfredo (7)
Traynor, Bryan J (7)
Melki, Judith (7)
Soraru, Gianni (7)
Smith, Bradley N. (7)
Powell, John F. (6)
Jones, Ashley R. (6)
D'Alfonso, Sandra (6)
Al Khleifat, Ahmad (6)
Meyer, Thomas (6)
Uitterlinden, André ... (6)
Lemmens, Robin (6)
Turner, Martin R (6)
Cereda, Cristina (6)
Brown, Robert H., Jr ... (6)
Mazzini, Letizia (6)
Del Bo, Roberto (6)
visa färre...
Lärosäte
Umeå universitet (45)
Karolinska Institutet (5)
Uppsala universitet (4)
Göteborgs universitet (3)
Lunds universitet (3)
Linköpings universitet (2)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (51)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (42)
Naturvetenskap (2)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy