SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klei Lambertus) "

Sökning: WFRF:(Klei Lambertus)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
2.
  • Anney, Richard, et al. (författare)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
3.
  • Li, Dalin, et al. (författare)
  • A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition
  • 2016
  • Ingår i: Gastroenterology. - : Saunders Elsevier. - 0016-5085 .- 1528-0012. ; 151:4, s. 724-732
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA).Methods: Genotyping was performed in 10,523 IBD cases and 5726 non-IBD controls. There were 91,713 functional single-nucleotide polymorphism loci in coding regions analyzed. A novel identified association was replicated further in 2 independent cohorts. We further examined the association of the identified single-nucleotide polymorphism with microbiota from 338 mucosal lavage samples in the Mucosal Luminal Interface cohort measured using 16S sequencing.Results: We identified an association between CD and a missense variant encoding alanine or threonine at position 391 in the zinc transporter solute carrier family 39, member 8 protein (SLC39A8 alanine 391 threonine, rs13107325) and replicated the association with CD in 2 replication cohorts (combined meta-analysis P = 5.55 × 10(-13)). This variant has been associated previously with distinct phenotypes including obesity, lipid levels, blood pressure, and schizophrenia. We subsequently determined that the CD risk allele was associated with altered colonic mucosal microbiome composition in both healthy controls (P = .009) and CD cases (P = .0009). Moreover, microbes depleted in healthy carriers strongly overlap with those reduced in CD patients (P = 9.24 × 10(-16)) and overweight individuals (P = 6.73 × 10(-16)).Conclusions: Our results suggest that an SLC39A8-dependent shift in the gut microbiome could explain its pleiotropic effects on multiple complex diseases including CD.
  •  
4.
  •  
5.
  • Mahjani, Behrang, et al. (författare)
  • Direct additive genetics and maternal effect contribute to the risk of Tourette disorder
  • 2023
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 94:8, s. 638-642
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Risk for Tourette disorder, and chronic motor or vocal tic disorders (referenced here inclusively as CTD), arise from a combination of genetic and environmental factors. While multiple studies have demonstrated the importance of direct additive genetic variation for CTD risk, little is known about the role of cross-generational transmission of genetic risk, such as maternal effect, which is not transmitted via the inherited parental genomes. Here, we partition sources of variation on CTD risk into direct additive genetic effect (narrow-sense heritability) and maternal effect.METHODS: The study population consists of 2 522 677 individuals from the Swedish Medical Birth Register, who were born in Sweden between 1 January 1973 and 31 December 2000, and followed for a diagnosis of CTD through 31 December, 2013. We used generalised linear mixed models to partition the liability of CTD into: direct additive genetic effect, genetic maternal effect and environmental maternal effect.RESULTS: We identified 6227 (0.2%) individuals in the birth cohort with a CTD diagnosis. A study of half-siblings showed that maternal half-siblings had twice higher risk of developing a CTD compared with paternal ones. We estimated 60.7% direct additive genetic effect (95% credible interval, 58.5% to 62.4%), 4.8% genetic maternal effect (95% credible interval, 4.4% to 5.1%) and 0.5% environmental maternal effect (95% credible interval, 0.2% to 7%).CONCLUSIONS: Our results demonstrate genetic maternal effect contributes to the risk of CTD. Failure to account for maternal effect results in an incomplete understanding of the genetic risk architecture of CTD, as the risk for CTD is impacted by maternal effect which is above and beyond the risk from transmitted genetic effect.
  •  
6.
  • Mahjani, Behrang, et al. (författare)
  • Maternal Effects as Causes of Risk for Obsessive-Compulsive Disorder
  • 2020
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 87:12, s. 1045-1051
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: While genetic variation has a known impact on the risk for obsessive-compulsive disorder (OCD), there is also evidence that there are maternal components to this risk. Here, we partitioned sources of variation, including direct genetic and maternal effects, on risk for OCD.METHODS: The study population consisted of 822,843 individuals from the Swedish Medical Birth Register, born in Sweden between January 1, 1982, and December 31, 1990, and followed for a diagnosis of OCD through December 31, 2013. Diagnostic information about OCD was obtained using the Swedish National Patient Register.RESULTS: A total of 7184 individuals in the birth cohort (0.87%) were diagnosed with OCD. After exploring various generalized linear mixed models to fit the diagnostic data, genetic maternal effects accounted for 7.6% (95% credible interval: 6.9%-8.3%) of the total variance in risk for OCD for the best model, and direct additive genetics accounted for 35% (95% credible interval: 32.3%-36.9%). These findings were robust under alternative models.CONCLUSIONS: Our results establish genetic maternal effects as influencing risk for OCD in offspring. We also show that additive genetic effects in OCD are overestimated when maternal effects are not modeled.
  •  
7.
  • Mahjani, Behrang, et al. (författare)
  • The Genetic Architecture of Obsessive-Compulsive Disorder: Contribution of Liability to OCD From Alleles Across the Frequency Spectrum.
  • 2022
  • Ingår i: The American journal of psychiatry. - : American Psychiatric Association Publishing. - 1535-7228 .- 0002-953X. ; 179:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Obsessive-compulsive disorder (OCD) is known to be substantially heritable; however, the contribution of genetic variation across the allele frequency spectrum to this heritability remains uncertain. The authors used two new homogeneous cohorts to estimate the heritability of OCD from inherited genetic variation and contrasted the results with those of previous studies.The sample consisted of 2,090 Swedish-born individuals diagnosed with OCD and 4,567 control subjects, all genotyped for common genetic variants, specifically >400,000 single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥0.01. Using genotypes of these SNPs to estimate distant familial relationships among individuals, the authors estimated the heritability of OCD, both overall and partitioned according to MAF bins.Narrow-sense heritability of OCD was estimated at 29% (SE=4%). The estimate was robust, varying only modestly under different models. Contrary to an earlier study, however, SNPs with MAF between 0.01 and 0.05 accounted for 10% of heritability, and estimated heritability per MAF bin roughly followed expectations based on a simple model for SNP-based heritability.These results indicate that common inherited risk variation (MAF ≥0.01) accounts for most of the heritable variation in OCD. SNPs with low MAF contribute meaningfully to the heritability of OCD, and the results are consistent with expectation under the "infinitesimal model" (also referred to as the "polygenic model"), where risk is influenced by a large number of loci across the genome and across MAF bins.
  •  
8.
  • Pinto, Dalila, et al. (författare)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • Ingår i: American journal of human genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 94:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
9.
  • Pinto, Dalila, et al. (författare)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7304, s. 368-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
10.
  • Szatmari, Peter, et al. (författare)
  • Mapping autism risk loci using genetic linkage and chromosomal rearrangements.
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 319-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,168 families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy