SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jencson J. E.) srt2:(2020)"

Search: WFRF:(Jencson J. E.) > (2020)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yan, Lin, et al. (author)
  • Helium-rich Superluminous Supernovae from the Zwicky Transient Facility
  • 2020
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 902:1
  • Journal article (peer-reviewed)abstract
    • Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), atz = 0.0866. This event has more than 10 optical spectra at phases from -41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing Heifeatures with P-Cygni profiles at 1.083 and 2.058 mu m. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of Heiatoms in normal core-collapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional(56)Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frameM(g) = -20.06 0.16).
  •  
2.
  • Andreoni, Igor, et al. (author)
  • GROWTH on S190814bv : Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Journal article (peer-reviewed)abstract
    • On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg(2) at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M-ej < 0.04 M-circle dot at polar viewing angles, or M-ej < 0.03 M-circle dot if the opacity is kappa < 2 cm(2)g(-1). Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be chi < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs.
  •  
3.
  • De, Kishalay, et al. (author)
  • The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Journal article (peer-reviewed)abstract
    • Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100 '' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > -17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to greater than or similar to 15% +/- 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to those with SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g - r approximate to 1.5 mag) or green (g - r approximate to 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca II]/[O I] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.
  •  
4.
  • Blagorodnova, N., et al. (author)
  • Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 496:4, s. 5503-5517
  • Journal article (peer-reviewed)abstract
    • M31-LRN-2015 is a likely stellar merger discovered in the Andromeda Galaxy in 2015. We present new optical to mid-infrared photometry and optical spectroscopy for this event. Archival data show that the source started to brighten similar to 2 yr before the nova event. During this precursor phase, the source brightened by similar to 3 mag. The light curve at 6 and 1.5 months before the main outburst may show periodicity, with periods of 16 +/- 0.3 and 28.1 +/- 1.4 d, respectively. This complex emission may be explained by runaway mass-loss from the system after the binary undergoes Roche lobe overflow, leading the system to coalesce in tens of orbital periods. While the progenitor spectral energy distribution shows no evidence of pre-existing warm dust in the system, the remnant forms an optically thick dust shell at approximately four months after the outburst peak. The optical depth of the shell increases dramatically after 1.5 yr, suggesting the existence of shocks that enhance the dust formation process. We propose that the merger remnant is likely an inflated giant obscured by a cooling shell of gas with mass similar to 0.2 M-circle dot ejected at the onset of the common envelope phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view