SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruggeri A) srt2:(2020-2022)"

Sökning: WFRF:(Ruggeri A) > (2020-2022)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poley, L., et al. (författare)
  • The ABC130 barrel module prototyping programme for the ATLAS strip tracker
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
  •  
2.
  •  
3.
  •  
4.
  • Ruggeri, Kai, et al. (författare)
  • The globalizability of temporal discounting
  • 2022
  • Ingår i: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 6:10, s. 1386-1397
  • Tidskriftsartikel (refereegranskat)abstract
    • Economic inequality is associated with preferences for smaller, immediate gains over larger, delayed ones. Such temporal discounting may feed into rising global inequality, yet it is unclear whether it is a function of choice preferences or norms, or rather the absence of sufficient resources for immediate needs. It is also not clear whether these reflect true differences in choice patterns between income groups. We tested temporal discounting and five intertemporal choice anomalies using local currencies and value standards in 61 countries (N = 13,629). Across a diverse sample, we found consistent, robust rates of choice anomalies. Lower-income groups were not significantly different, but economic inequality and broader financial circumstances were clearly correlated with population choice patterns. Ruggeri et al. find in a study of 61 countries that temporal discounting patterns are globally generalizable. Worse financial environments, greater inequality and high inflation are associated with extreme or inconsistent long-term decisions.
  •  
5.
  • Jia, TY, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:8, s. 3884-3895
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Rodrigues, M., et al. (författare)
  • Structure-specific amyloid precipitation in biofluids
  • 2022
  • Ingår i: Nature Chemistry. - : Springer Science and Business Media LLC. - 1755-4330 .- 1755-4349. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of soluble toxic protein aggregates formed in vivo is currently unknown in neurodegenerative diseases, due to their ultra-low concentration in human biofluids and their high degree of heterogeneity. Here we report a method to capture amyloid-containing aggregates in human biofluids in an unbiased way, a process we name amyloid precipitation. We use a structure-specific chemical dimer, a Y-shaped, bio-inspired small molecule with two capture groups, for amyloid precipitation to increase affinity. Our capture molecule for amyloid precipitation (CAP-1) consists of a derivative of Pittsburgh Compound B (dimer) to target the cross beta-sheets of amyloids and a biotin moiety for surface immobilization. By coupling CAP-1 to magnetic beads, we demonstrate that we can target the amyloid structure of all protein aggregates present in human cerebrospinal fluid, isolate them for analysis and then characterize them using single-molecule fluorescence imaging and mass spectrometry. Amyloid precipitation enables unbiased determination of the molecular composition and structural features of the in vivo aggregates formed in neurodegenerative diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy