SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-293864"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-293864" > Phase-Transition Th...

Phase-Transition Thermal Charging of a Channel-Shape Thermal Energy Storage Unit : Taguchi Optimization Approach and Copper Foam Inserts

Ghalambaz, Mohammad (författare)
Ton Duc Thang University
Mehryan, Seyed Abdollah Mansouri (författare)
Islamic Azad University
Hajjar, Ahmad (författare)
Université de Lyon
visa fler...
Younis, Obai (författare)
Prince Sattam Bin Abdulaziz University; University of Khartoum
Sheremet, Mikhail (författare)
Tomsk State University
Saffari Pour, Mohsen, 1987- (författare)
KTH,Processer,Shahid Bahonar University of Kerman
Hulme-Smith, Christopher, 1989- (författare)
KTH,Processer,Powder metallurgy
visa färre...
 (creator_code:org_t)
2021-02-25
2021
Engelska.
Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 26
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Thermal energy storage is a technique that has the potential to contribute to future energy grids to reduce fluctuations in supply from renewable energy sources. The principle of energy storage is to drive an endothermic phase change when excess energy is available and to allow the phase change to reverse and release heat when energy demand exceeds supply. Unwanted charge leakage and low heat transfer rates can limit the effectiveness of the units, but both of these problems can be mitigated by incorporating a metal foam into the design of the storage unit. This study demonstrates the benefits of adding copper foam into a thermal energy storage unit based on capric acid enhanced by copper nanoparticles. The volume fraction of nanoparticles and the location and porosity of the foam were optimized using the Taguchi approach to minimize the charge leakage expected from simulations. Placing the foam layer at the bottom of the unit with the maximum possible height and minimum porosity led to the lowest charge time. The optimum concentration of nanoparticles was found to be 4 vol.%, while the maximu possible concentration was 6 vol.%. The use of an optimized design of the enclosure and the optimum fraction of nanoparticles led to a predicted charging time for the unit that was approximately 58% shorter than that of the worst design. A sensitivity analysis shows that the height of the foam layer and its porosity are the dominant variables, and the location of the porous layer and volume fraction of nanoparticles are of secondary importance. Therefore, a well-designed location and size of a metal foam layer could be used to improve the charging speed of thermal energy storage units significantly. In such designs, the porosity and the placement-location of the foam should be considered more strongly than other factors.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Nyckelord

thermal energy storage; copper foam; phase transition; fast charging
Energy Technology
Energiteknik
Teknisk materialvetenskap
Materials Science and Engineering

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

  • Molecules (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy