SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ltu-28678"
 

Sökning: onr:"swepub:oai:DiVA.org:ltu-28678" > One-way coupling of...

One-way coupling of an advanced CFD multi-physics model to FEA for predicting stress-strain in the solidifying shell during continuous casting of steel

Svensson, Johan (författare)
RISE,MEFOS AB,Casting and Flow Simulation Group, Swerea MEFOS
Lopez, Pavel E Ramirez (författare)
RISE,MEFOS AB,Casting and Flow Simulation Group, Swerea MEFOS
Jalali, P.N. (författare)
RISE,MEFOS AB,Casting and Flow Simulation Group, Swerea MEFOS
visa fler...
Cervantes, Michel (författare)
Luleå tekniska universitet,Strömningslära och experimentell mekanik,Luleå University of Technology, Sweden
visa färre...
 (creator_code:org_t)
Institute of Physics Publishing, 2015
2015
Engelska.
Ingår i: IOP Conference Series. - : Institute of Physics Publishing. - 1757-8981 .- 1757-899X. ; 84:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • One of the main targets for Continuous Casting (CC) modelling is the actual prediction of defects during transient events. However, the majority of CC models are based on a statistical approach towards flow and powder performance, which is unable to capture the subtleties of small variations in casting conditions during real industrial operation or the combined effects of such changes leading eventually to defects. An advanced Computational Fluid Dynamics (CFD) model; which accounts for transient changes on lubrication during casting due to turbulent flow dynamics and mould oscillation has been presented on MCWASP XIV (Austria) to address these issues. The model has been successfully applied to the industrial environment to tackle typical problems such as lack of lubrication or unstable flows. However, a direct application to cracking had proven elusive. The present paper describes how results from this advanced CFD-CC model have been successfully coupled to structural Finite Element Analysis (FEA) for prediction of stress-strains as a function of irregular lubrication conditions in the mould. The main challenge for coupling was the extraction of the solidified shell from CFD calculations (carried out with a hybrid structured mesh) and creating a geometry by using iso-surfaces, re-meshing and mapping loads (e.g. temperature, pressure and external body forces), which served as input to mechanical stress-strain calculations. Preliminary results for CC of slabs show that the temperature distribution within the shell causes shrinkage and thermal deformation; which are in turn, the main source of stress. Results also show reasonable stress levels of 10-20 MPa in regions, where the shell is thin and exposed to large temperature gradients. Finally, predictions are in good agreement with prior works where stresses indicate compression at the slab surface, while tension is observed at the interior; generating a characteristic stress-strain state during solidification in CC

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Nyckelord

Strömningslära
Fluid Mechanics

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Svensson, Johan
Lopez, Pavel E R ...
Jalali, P.N.
Cervantes, Miche ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Maskinteknik
och Strömningsmekani ...
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Materialteknik
Artiklar i publikationen
IOP Conference S ...
Av lärosätet
Luleå tekniska universitet
RISE

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy