SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:miun-45750"
 

Sökning: onr:"swepub:oai:DiVA.org:miun-45750" > Elastic O-RAN Slici...

Elastic O-RAN Slicing for Industrial Monitoring and Control : A Distributed Matching Game and Deep Reinforcement Learning Approach

Fakhrul Abedin, Sarder (författare)
Mittuniversitetet,Institutionen för informationssystem och –teknologi
Mahmood, Aamir, 1980- (författare)
Mittuniversitetet,Institutionen för informationssystem och –teknologi
Tran, N. H. (författare)
visa fler...
Han, Z. (författare)
Gidlund, Mikael, 1972- (författare)
Mittuniversitetet,Institutionen för informationssystem och –teknologi
visa färre...
 (creator_code:org_t)
2022
2022
Engelska.
Ingår i: IEEE Transactions on Vehicular Technology. - 0018-9545 .- 1939-9359. ; 71:10, s. 10808-10822
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • In this work, we design an elastic open radio access network (O-RAN) slicing for the Industrial Internet of things (IIoT). Due to the rapid spread of IoT in the industrial use-cases such as safety and mobile robot communications, the IIoT landscape has been shifted from static manufacturing processes towards dynamic manufacturing workflows (e.g., Modular Production System). But unlike IoT, IIoT poses additional challenges such as severe communication environment, network-slice resource demand variations, and on-time information update from the IIoT devices during industrial production. First, we formulate the O-RAN slicing problem for on-time industrial monitoring and control where the objective is to minimize the cost of fresh information updates (i.e., age of information (AoI)) from the IIoT devices (i.e., sensors) with the device energy consumption and O-RAN slice isolation constraints. Second, we propose the intelligent O-RAN framework based on game theory and machine learning to mitigate the problem’s complexity. We propose a two-sided distributed matching game in the O-RAN control layer that captures the IIoT channel characteristics and the IIoT service priorities to create IIoT device and small cell base station (SBS) preference lists. We then employ an actor-critic model with a deep deterministic policy gradient (DDPG) in the O-RAN service management layer to solve the resource allocation problem for optimizing the network slice configuration policy under time-varying slicing demand. Furthermore, the proposed matching game within the actor-critic model training helps to enforce the long-term policy-based guidance for resource allocation that reflects the trends of all IIoT devices and SBSs satisfactions with the assignment. Finally, the simulation results show that the proposed solution enhances the performance gain for the IIoT services by serving an average of $50\%$ and $43.64\%$ more IIoT devices than the baseline approaches. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

5G mobile communication
age of information
deep reinforcement learning
Energy efficiency
game theory
Industrial Internet of Things
Industrial IoT
Monitoring
Network slicing
open RAN slicing
Quality of service
Resource management

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Fakhrul Abedin, ...
Mahmood, Aamir, ...
Tran, N. H.
Han, Z.
Gidlund, Mikael, ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Elektroteknik oc ...
Artiklar i publikationen
IEEE Transaction ...
Av lärosätet
Mittuniversitetet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy