SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ri-64103"
 

Sökning: onr:"swepub:oai:DiVA.org:ri-64103" > Computational model...

  • Siddanathi, Likitha SaiLuleå tekniska universitet,Strömningslära och experimentell mekanik (författare)

Computational modeling and temperature measurements using emission spectroscopy on a non-transferred plasma torch

  • Artikel/kapitelEngelska2023

Förlag, utgivningsår, omfång ...

  • American Institute of Physics Inc.2023
  • printrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:ri-64103
  • https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-64103URI
  • https://doi.org/10.1063/5.0129653DOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-95556URI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • Funding details: Energimyndigheten, 49609-1; Funding text 1: This work was funded by the Swedish Energy Agency, Grant No. 49609-1.
  • Validerad;2023;Nivå 2;2023-02-08 (johcin)
  • A non-transferred plasma torch is a device used to generate a steady thermal plasma jet. Plasma torches have the potential to replace fossil fuel burners used as heat sources in the process industry. Today, however, the available plasma torches are of small scale compared to the power used in the burners in the process industry. In order to understand the effects of large scales on the plasma flow dynamics, it is essential to understand the operation of the plasma torch under different operating conditions and for different geometries. In this study, the analysis of a non-transferred plasma torch has been carried out using both computational and experimental methods. Computationally, the magnetohydrodynamic (MHD) equations are solved using a single-fluid model on a 2D axisymmetric torch geometry. The experiments are performed using emission spectroscopy to measure the plasma jet temperature at the outlet. This paper explains the changes in the arc formation, temperature, and velocity for different working gases and power inputs. Furthermore, the possibilities and disadvantages of the MHD approach, considering a local thermal equilibrium, are discussed. It was found that in general, the computational temperature obtained is supported by the experimental and equilibrium data. The computational temperatures agree by within 10% with the experimental ones at the center of the plasma torch. The paper concludes by explaining the significant impact of input properties like working gas and power input on the output properties like velocity and temperature of plasma jet. © 2023 Author(s).

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Westerberg, Lars-GöranLuleå tekniska universitet,Strömningslära och experimentell mekanik(Swepub:ltu)lgwe (författare)
  • Åkerstedt, Hans O.Luleå tekniska universitet,Strömningslära och experimentell mekanik(Swepub:ltu)hake (författare)
  • Wiinikka, HenrikRISE,Bioraffinaderi och energi,RISE AB, SE-941 38 Piteå, Sweden(Swepub:ri)HenrikWi@ri.se (författare)
  • Sepman, AlexeyRISE,Bioraffinaderi och energi,RISE AB, SE-941 38 Piteå, Sweden(Swepub:ri)AlexeySe@ri.se (författare)
  • Luleå tekniska universitetStrömningslära och experimentell mekanik (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:AIP Advances: American Institute of Physics Inc.13:22158-3226

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy