SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-284085"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-284085" > Stochastic Simulati...

  • Meinecke, Lina,1986-Uppsala universitet,Avdelningen för beräkningsvetenskap,Numerisk analys (författare)

Stochastic Simulation of Multiscale Reaction-Diffusion Models via First Exit Times

  • BokEngelska2016

Förlag, utgivningsår, omfång ...

  • Uppsala :Acta Universitatis Upsaliensis,2016
  • 53 s.
  • electronicrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:uu-284085
  • ISBN:9789155495824
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284085URI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:vet swepub-contenttype
  • Ämneskategori:dok swepub-publicationtype

Anmärkningar

  • Mathematical models are important tools in systems biology, since the regulatory networks in biological cells are too complicated to understand by biological experiments alone. Analytical solutions can be derived only for the simplest models and numerical simulations are necessary in most cases to evaluate the models and their properties and to compare them with measured data.This thesis focuses on the mesoscopic simulation level, which captures both, space dependent behavior by diffusion and the inherent stochasticity of cellular systems. Space is partitioned into compartments by a mesh and the number of molecules of each species in each compartment gives the state of the system. We first examine how to compute the jump coefficients for a discrete stochastic jump process on unstructured meshes from a first exit time approach guaranteeing the correct speed of diffusion. Furthermore, we analyze different methods leading to non-negative coefficients by backward analysis and derive a new method, minimizing both the error in the diffusion coefficient and in the particle distribution.The second part of this thesis investigates macromolecular crowding effects. A high percentage of the cytosol and membranes of cells are occupied by molecules. This impedes the diffusive motion and also affects the reaction rates. Most algorithms for cell simulations are either derived for a dilute medium or become computationally very expensive when applied to a crowded environment. Therefore, we develop a multiscale approach, which takes the microscopic positions of the molecules into account, while still allowing for efficient stochastic simulations on the mesoscopic level. Finally, we compare on- and off-lattice models on the microscopic level when applied to a crowded environment.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Lötstedt, Per,ProfessorUppsala universitet,Avdelningen för beräkningsvetenskap(Swepub:uu)plo24874 (preses)
  • Engblom, Stefan,DocentUppsala universitet,Avdelningen för beräkningsvetenskap(Swepub:uu)steng957 (preses)
  • Grima, Ramon,ReaderUniversity of Edinburgh (opponent)
  • Uppsala universitetAvdelningen för beräkningsvetenskap (creator_code:org_t)

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy