SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2211 3835 "

Search: L773:2211 3835

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cen, Xiaohong, et al. (author)
  • Small molecule SMU-CX24 targeting toll-like receptor 3 counteracts inflammation : A novel approach to atherosclerosis therapy
  • 2022
  • In: Acta Pharmaceutica Sinica B. - : Elsevier BV. - 2211-3835 .- 2211-3843. ; 12:9, s. 3667-3681
  • Journal article (peer-reviewed)abstract
    • Toll-like receptor 3 (TLR3), as an important pattern recognition receptor (PRR), dominates the innate and adaptive immunity regulating many acute and chronic inflammatory diseases. Atherosclerosis is proved as an inflammatory disease, and inflammatory events involved in the entire process of initiation and deterioration. However, the contribution of TLR3 to atherosclerosis remains unclear. Herein, we identified the clinical relevance of TLR3 upregulation and disease processes in human atherosclerosis. Besides, activation of TLR3 also directly led to significant expression of atherogenic chemokines and adhesion molecules. Conversely, silencing TLR3 inhibited the uptake of oxLDL by macrophages and significantly reduced foam cell formation. Given the aberrance in TLR3 functions on atherosclerosis progression, we hypothesized that TLR3 could serve as novel target for clinical atherosclerosis therapy. Therefore, we developed the novel ellipticine derivative SMU-CX24, which specifically inhibited TLR3 (IC50 = 18.87 ± 2.21 nmol/L). In vivo, atherosclerotic burden was alleviated in Western diet fed ApoE-/- mice in response to SMU-CX24 treatment, accompanying notable reductions in TLR3 expression and inflammation infiltration within atherosclerotic lesion. Thus, for the first time, we revealed that pharmacological downregulation of TLR3 with specific inhibitor regenerated inflammatory environment to counteract atherosclerosis progression, thereby proposing a new strategy and probe for atherosclerosis therapy.
  •  
2.
  • Dahlgren, David, et al. (author)
  • Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats
  • 2021
  • In: Acta Pharmaceutica Sinica B. - : INST MATERIA MEDICA, CHINESE ACAD MEDICAL SCIENCES. - 2211-3835 .- 2211-3843. ; 11:6, s. 1667-1675
  • Journal article (peer-reviewed)abstract
    • Transcellular permeation enhancers are known to increase the intestinal permeability of enalaprilat, a 349 Da peptide, but not hexarelin (887 Da). The primary aim of this paper was to investigate if paracellular permeability enhancers affected the intestinal permeation of the two peptides. This was investigated using the rat single-pass intestinal perfusion model with concomitant blood sampling. These luminal compositions included two paracellular permeation enhancers, chitosan (5 mg/mL) and ethylenediaminetetraacetate (EDTA, 1 and 5 mg/mL), as well as low luminal tonicity (100 mOsm) with or without lidocaine. Effects were evaluated by the change in lumen-to-blood permeability of hexarelin and enalaprilat, and the blood-to-lumen clearance of (51)chromium-labeled EDTA (CLCr-EDTA), a clinical marker for mucosal barrier integrity. The two paracellular permeation enhancers increased the mucosal permeability of both peptide drugs to a similar extent. The data in this study suggests that the potential for paracellular permeability enhancers to increase intestinal absorption of hydrophilic peptides with low molecular mass is greater than for those with transcellular mechanism-of-action. Further, the mucosal blood-to-lumen flux of Cr-51-EDTA was increased by the two paracellular permeation enhancers and by luminal hypotonicity. In contrast, luminal hypotonicity did not affect the lumen-to-blood transport of enalaprilat and hexarelin. This suggests that hypotonicity affects paracellular solute transport primarily in the mucosal crypt region, as this area is protected from luminal contents by a constant water flow from the crypts.
  •  
3.
  • Han, Bo-Yun, et al. (author)
  • A highly selective C-rhamnosyltransferase from Viola tricolor and insights into its mechanisms
  • 2023
  • In: Acta Pharmaceutica Sinica B. - : Elsevier. - 2211-3835 .- 2211-3843. ; 13:8, s. 3535-3544
  • Journal article (peer-reviewed)abstract
    • C-Glycosides are important natural products with various bioactivities. In plant biosynthetic pathways, the C-glycosylation step is usually catalyzed by C-glycosyltransferases (CGTs), and most of them prefer to accept uridine 5′-diphosphate glucose (UDP-Glc) as sugar donor. No CGTs favoring UDP-rhamnose (UDP-Rha) as sugar donor has been reported, thus far. Herein, we report the first selective C-rhamnosyltransferase VtCGTc from the medicinal plant Viola tricolor. VtCGTc could efficiently catalyze C-rhamnosylation of 2-hydroxynaringenin 3-C-glucoside, and exhibited high selectivity towards UDP-Rha. Mechanisms for the sugar donor selectivity of VtCGTc were investigated by molecular dynamics (MD) simulations and molecular mechanics with generalized Born and surface area solvation (MM/GBSA) binding free energy calculations. Val144 played a vital role in recognizing UDP-Rha, and the V144T mutant could efficiently utilize UDP-Glc. This work provides a new and efficient approach to prepare flavonoid C-rhamnosides such as violanthin and iso-violanthin.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view