SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adil R) "

Sökning: WFRF:(Adil R)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Jones, Benedict C, et al. (författare)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • Ingår i: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
6.
  • Lakens, Daniel, et al. (författare)
  • Justify your alpha
  • 2018
  • Ingår i: Nature Human Behaviour. - : Nature Publishing Group. - 2397-3374. ; 2:3, s. 168-171
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to recommendations to redefine statistical significance to P ≤ 0.005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level.
  •  
7.
  •  
8.
  • Baboota, Ritesh, et al. (författare)
  • Chronic hyperinsulinemia promotes human hepatocyte senescence
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. Methods: Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. Results: Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. Conclusion: Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin. 
  •  
9.
  • Braeckman, U., et al. (författare)
  • Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Nino spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Nina spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor. Ulrike Braeckman et al. use in situ benthic community and benthic biogeochemistry measurements in Potter Cove on the Antarctic Peninsula to show that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. This study sheds light on how future glacial melt and run-off may affect the metabolic balance of Antarctic benthic communities.
  •  
10.
  • Das, P., et al. (författare)
  • Exotic decay of 115Cs
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 108:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The detailed study of the β+/EC decay of the very neutron-deficient and alpha-unbound nucleus 115Cs is presented. The measurement was performed at the ISOLDE, CERN where delayed charged particles and γ rays were detected. The observed delayed γ rays are in agreement with the previously reported characteristics γ rays of 115Xe. Based on the experimental observations, the tentative ground-state spin of 115Cs is suggested to be 7/2+ or 9/2+. Furthermore, the measured decay branching ratio of delayed protons exceeds the previously reported value. Additionally, new delayed α-branching ratio and several reconstructed proton and α-unbound excited states of 115Xe are being reported for the first time. The properties of proton-unbound states at excitation energies from 3.9–7.9 MeV have been obtained by fitting the delayed proton spectrum via the Bayesian method. The measured lifetimes of these proton-unbound states are in the order of zeptoseconds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy