SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmad Jawad 1985 ) "

Sökning: WFRF:(Ahmad Jawad 1985 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, Jawad, 1985-, et al. (författare)
  • A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a posture recognition system aimed at detecting sitting postures of a wheelchair user. The main goals of the proposed system are to identify and inform irregular and improper posture to prevent sitting-related health issues such as pressure ulcers, with the potential that it could also be used for individuals without mobility issues. In the proposed monitoring system, an array of 16 screen printed pressure sensor units was employed to obtain pressure data, which are sampled and processed in real-time using read-out electronics. The posture recognition was performed for four sitting positions: right-, left-, forward- and backward leaning based on k-nearest neighbors (k-NN), support vector machines (SVM), random forest (RF), decision tree (DT) and LightGBM machine learning algorithms. As a result, a posture classification accuracy of up to 99.03 percent can be achieved. Experimental studies illustrate that the system can provide real-time pressure distribution value in the form of a pressure map on a standard PC and also on a raspberry pi system equipped with a touchscreen monitor. The stored pressure distribution data can later be shared with healthcare professionals so that abnormalities in sitting patterns can be identified by employing a post-processing unit. The proposed system could be used for risk assessments related to pressure ulcers. It may be served as a benchmark by recording and identifying individuals’ sitting patterns and the possibility of being realized as a lightweight portable health monitoring device.
  •  
2.
  •  
3.
  •  
4.
  • Ahmad, Jawad, 1985- (författare)
  • Development and Characterization of Large Area Pressure Sensors and Sitting Posture Monitoring Systems
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the emergence of the Internet and rapid development of science and technology over the past few decades, many individuals worldwide now rely on the Internet to conduct daily activities ranging from education, business and creativity to communication and shopping. As we tend to spend more and more time on the Internet and engage less in physical activities, this persistent behaviour could result in some health-related issues within a relatively short period of time. This behaviour, known as sedentary lifestyle, may be related to a higher risk of cardiovascular disease, osteoporosis, obesity, anxiety, pressure ulcers and many other illnesses. As a consequence, there has been great interest in developing non-invasive and unobtrusive measurement techniques for a variety of health care-monitoring applications, such as for blood oxygen saturation, stress levels, electrocardiograms and glucose monitoring. In such systems, wearable and flexible electronics technologies may enable monitoring of vital signs, offering significant potential for early screening as well as long-term behaviour modelling.In this thesis, large area pressure sensors based on non-conventional materials are proposed and realised by screen printing technique for monitoring sitting postures. The developed pressure sensing system measures distributed pressure when an individual sits on a chair equipped with a pressure sensor array. This technology could provide grounding for the advancement of health-related monitoring systems for both able-bodied and disabled individuals and inform them of their sitting time and sitting posture, and this could be used to establish a sitting pattern. To accomplish this, pressure sensors have been designed using non-conventional flexible electronics. A blend of non-conductive and low-resistance ink is used as pressure-sensitive material to enable the realization of screen-printed sensors. To characterise the performance of the suggested pressure sensor, several tests, such as repeatability, drift and flexibility, are conducted. The sensor has also been exposed to different humidity and temperature conditions in a climate chamber to examine its functionalities.A graphical user interface was developed for real-time demonstration of data from distributed pressure points in the form of a pressure map to display the pressure values. Four sitting postures are identified: forward, backward, left, and right leaning. Furthermore, a stretchable pressure sensor is proposed that could follow slight stretching with regard to changes in the shape of the human skin. Machine learning algorithms have been employed to further enhance the sitting posture identification, and accuracy of 99.03% is attained. A standalone embedded system capable of illustrating real-time pressure data has been developed with the potential to be used in portable health monitoring systems. In summary, this work provides a promising framework for measuring pressure distribution and identifying irregular sitting postures that may help to reduce the potential risks of developing health-related issues associated with prolonged sitting time.
  •  
5.
  • Ahmad, Jawad, 1985- (författare)
  • Screen Printed Large Area Sensors for Pressure Distribution Monitoring in Wheelchairs
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A sedentary lifestyle can induce health related problems including pressure ulcers. Pro­longed sitting inadequacies constitute a risk for pressure ulcer to many individuals, in particular people with disabilities and re­duced mobility. The measurement of distributed pressure and detection of irregular sitting postures are essential in prevention of the risk of developing pres­sure ulcers.In this thesis, a screen-printed pressure sensor for a large area is presented, with the objective of measuring the distributed pressure of a seated per­son in a wheelchair. The conductors and interdigital patterns are printed with silver-based ink. A blend of a non-conductive and a low resis­tive ink is used for customized resistance for an optimal sensing range of the pressure sensor. The effect of moisture and temper­ature are realized in an environment chamber. For characterization, other key performance tests such as repeatability, drift and flexibility are carried out. The surface morphology is carried out for structural analysis of printed samples. The sensor data is acquired and processed using an 8-bit ATmega-2560 micro­controller and wirelessly transmitted to a PC for post-processing, storage and analysis. For real-time data presentation of dis­tributed pressure points, a GUI has been developed to display the values ob­tained from the large area sensor. The detection of four sit­ting pos­tures; forward leaning, backward leaning, left leaning and right leaning along with a normal sitting posture is attained. An analysis for stretchable printed tracks has been conducted to investigate the changes in electrical resistance using elon­ga­tion tests, surface morphology and EDS. The optimal curing time and tem­per­ature were investigated to manufacture stretchable conductive tracks.In summary, the contributions in this thesis provides an effective approach regarding pressure distribution measurement and recognizing irregular sitting postures for wheelchair users.
  •  
6.
  • Ahmad, Jawad, 1985-, et al. (författare)
  • Screen Printed Piezoresistive Sensors for Monitoring Pressure Distribution in Wheelchair
  • 2019
  • Ingår i: IEEE Sensors Journal. - : IEEE. - 1530-437X .- 1558-1748. ; 19:6, s. 2055-2063
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolonged sitting inadequacies cause pressure ulcer to many individuals, especially to disadvantaged with reduced mobility. The measurement of distributed pressure and detection of irregular sitting postures is essential for preventing the risk of developing pressure ulcer. In this paper, a pressure sensing system capable of recognizing sitting postures by means of measuring interface pressure through printed pressure sensors is presented. A thin and flexible large area sensor is screen-printed using silver flake and carbon particle inks and comprises 16 sensing elements. For the evaluation of practical usability, the sensor characterization is carried out by conducting stability, repeatability, drift and bending tests. The performance of the sensor is checked under varying environmental conditions. Sitting posture detection accuracy above 80 % is achieved using a classification algorithm for four different sitting postures. Pressure distribution is monitored at a scanning rate of 10 Hz. A low power and small form factor of read-out electronics enables a compact packaging inside the seat cushion. The presented sensor design targets smart wheelchairs, but it is extendable to much larger areas, for example to be used in beds. The proposed sensing system would be of a great assistance for caregivers and health professionals.
  •  
7.
  • Ahmad, Jawad, 1985-, et al. (författare)
  • Sitting Posture Recognition using Screen Printed Large Area Pressure Sensors
  • 2017
  • Ingår i: Proceedings of IEEE Sensors. - : IEEE. - 9781509010127 ; , s. 232-234
  • Konferensbidrag (refereegranskat)abstract
    • In the biomedical sector, pressure sensors exhibit an important role towards monitoring and recognition of sitting posture for wheelchair users, which is helpful for pressure ulcer prevention and cure.  In this paper, a flexible and inexpensive screen printed large area pressure sensing system is presented. The large area sensor comprise three layers, is able to cancel-out false pressure detection, and achieves a sitting classification accuracy over 80 percent. The sensor matrix contains 16 sensors distributed over an area of 23.5 cm × 21.5 cm and the pressure points are monitored at a scanning rate of 77 Hz. The sensor system provides wireless communication and a Windows based GUI is developed that allows real-time presentation of pressure data by means of a pressure map. The presented sensor design targets smart wheelchairs but is suitable for any low cost and high throughput pressure distribution monitoring systems. 
  •  
8.
  • Ahmad, Jawad, 1985-, et al. (författare)
  • Stretchable Pressure Sensor Using Thermoplastic Polyurethane and Conductive Inks
  • 2021
  • Ingår i: Proceedings of IEEE Sensors. - : IEEE. - 9781728195018
  • Konferensbidrag (refereegranskat)abstract
    • The development of wearable health devices is an emerging technology, and pressure sensors have been widely used in several of these applications. Plenty of research within pressure sensors is focused on tactile sensing and artificial skin. In this paper, a highly flexible and stretchable pressure sensor is presented. The sensor comprises stretchable thermoplastic polyurethane (TPU) film as substrate and stretchable conductive inks as electrodes and sensing material. Screen printing is used to fabricate electrodes and pressure sensing components on TPU sheets. Electrical and mechanical properties of the fabricated sensors indicate good mechanical and electrical stability while retaining pressure sensing properties and marginal deterioration even after 100 elongation cycles. The findings show that the presented stretchable pressure sensor has a great potential for usage on surfaces where bending and stretching will occur while retaining nearly all of its electrical and mechanical capabilities. The proposed sensor may be employed as a wearable device to detect human movements.
  •  
9.
  • Li, Xiaotian, et al. (författare)
  • Flexible Circuits Based on Aluminum Conductor and Nonwoven Substrate
  • 2019
  • Ingår i: 2019 IEEE International Flexible Electronics Technology Conference, IFETC 2019. - : Institute of Electrical and Electronics Engineers Inc.. - 9781728117782
  • Konferensbidrag (refereegranskat)abstract
    • Electronic textiles, integrating functional electronics circuits into fabric materials, are emerging as an important branch of flexible circuits. In this paper, we introduce a novel material combination for electronic textiles that can be used in implementing hybrid electronics. This type of circuits is fabricated by laminating patterned aluminum foils onto a nonwoven substrate in a high-speed roll-to-roll method. An isotropic conductive adhesive and an anisotropic conductive adhesive are used to assemble standard surface mount device components onto the fabricated circuits. The surface mount techniques are characterized by means of contact resistance measurements, component bonding strength tests, circuit bending tests, and scanning electron microscopy. An NFC tag with relative humidity sensing functionality is fabricated to evaluate the fabricated circuits to an electronic system level. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy