SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed Saheeb) "

Sökning: WFRF:(Ahmed Saheeb)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Saheeb, et al. (författare)
  • Mover is a homomeric phospho-protein present on synaptic vesicles
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:5, s. e63474-
  • Tidskriftsartikel (refereegranskat)abstract
    • With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites.
  •  
2.
  • Lundgren, Jolanta L, et al. (författare)
  • Activity-independent release of the amyloid β-peptide from rat brain nerve terminals.
  • 2014
  • Ingår i: Neuroscience Letters. - : Elsevier BV. - 0304-3940 .- 1872-7972. ; 566:Mar 3, s. 125-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic degeneration is one of the earliest hallmarks of Alzheimer disease. The molecular mechanism underlying this degeneration is not fully elucidated but one key player appears to be the synaptotoxic amyloid β-peptide (Aβ). The exact localization of the production of Aβ and the mechanisms whereby Aβ is released remain elusive. We have earlier shown that Aβ can be produced in crude synaptic vesicle fractions and it has been reported that increased synaptic activity results in increased secreted but decreased intracellular Aβ levels. Therefore, we considered whether Aβ could be produced in synaptic vesicles and/or released through the same mechanisms as neurotransmitters in synaptic vesicle exocytosis. Small amounts of Aβ were found to be produced in pure synaptic vesicle preparations. We also studied the release of glutamate and Aβ from rat cortical nerve terminals (synaptosomes). We found that large amounts of Aβ were secreted from non-stimulated synaptosomes, from which glutamate was not released. On the contrary, we could not detect any differences in Aβ release between non-stimulated synaptosomes and synaptosomes stimulated with KCl or 4-aminopyridine, whereas glutamate release was readily inducible in this system. To conclude, our results indicate that the major release mechanism of Aβ from isolated nerve terminals differs from the synaptic release of glutamate and that the activity-dependent increase of secreted Aβ, reported by several groups using intact cells, is likely dependent on post-synaptic events, trafficking and/or protein synthesis mechanisms.
  •  
3.
  • Lundgren, Jolanta L, et al. (författare)
  • ADAM10 and BACE1 are localized to synaptic vesicles.
  • 2015
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 135:3, s. 606-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic degeneration and accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain are hallmarks of Alzheimer disease. Aβ is produced by sequential cleavage of its precursor protein, APP, by the β-secretase BACE1 and γ-secretase. However, Aβ generation is precluded if APP is cleaved by the α-secretase ADAM10 instead of BACE1. We have previously shown that Aβ can be produced locally at the synapse. To study the synaptic localization of the APP processing enzymes we used western blotting to demonstrate that, compared to total brain homogenate, ADAM10 and BACE1 were greatly enriched in synaptic vesicles isolated from rat brain using controlled-pore glass chromatography, whereas Presenilin1 was the only enriched component of the γ-secretase complex. Moreover, we detected ADAM10 activity in synaptic vesicles and enrichment of the intermediate APP-C-terminal fractions (APP-CTFs). We confirmed the western blotting findings using in situ proximity ligation assay to demonstrate close proximity of ADAM10 and BACE1 with the synaptic vesicle marker synaptophysin in intact mouse primary hippocampal neurons. In contrast, only sparse co-localization of active γ-secretase and synaptophysin was detected. These results indicate that the first step of APP processing occurs in synaptic vesicles whereas the final step is more likely to take place elsewhere. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy