SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almén Anja) "

Sökning: WFRF:(Almén Anja)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almén, Anja, 1964, et al. (författare)
  • A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS
  • 2016
  • Ingår i: Radiation protection dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 169:1-4, s. 17-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.
  •  
2.
  • Almén, Anja, et al. (författare)
  • Challenges assessing radiation risk in image-guided treatments-implications on optimisation of radiological protection
  • 2018
  • Ingår i: Journal of Radiological Protection. - : IOP Publishing. - 0952-4746 .- 1361-6498. ; 38:3, s. 1064-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work explores challenges when assessing organ dose and effective dose concerning image-guided treatments. During these treatments considerable x-ray imaging is employed using technically advanced angiographic x-ray equipment. Thus, the radiation dose to organs and the related radiation risk are relatively difficult to assess. This has implications on the optimisation process, in which assessing radiation dose is one important part. In this study, endovascular aortic repair treatments were investigated. Organ dose and effective dose were assessed using Monte Carlo calculations together with a detailed specification of the exposure situation and patient size. The resulting normalised organ dose and effective dose with respect to kerma-area product for patient sizes and radiation qualities representative for the patient group were evaluated. The variability and uncertainty were investigated and their possible impact on optimisation of radiation protection was discussed. Exposure parameters, source to detector distances etc varied between treatments and also varied between image acquisitions during one treatment. Thus the derived normalised organ dose and effective dose exhibited a large range of values depending greatly on used exposure parameters and patient configuration. The derived normalised values for effective dose varied approximately between 0.05 and 0.30 mSv per Gy.cm(2) when taking patient sizes and exposure parameters into consideration, the values for organ doses exhibited even larger variation. The study shows a possible systematic error for derived organ doses and effective dose up to a factor of 7 if detailed exposure or patient characteristics are not known and/or not taken into consideration. The intra-treatment variability was also substantial and the normalised dose values varied up to a factor of 2 between image acquisitions during one treatment. The study shows that the use of conversion factors that are not adapted to the clinic can cause the radiation dose to be exaggerated or underestimated considerably. A conclusion from the present study is that the systematic error could be large and should be estimated together with random errors. A large uncertainty makes it difficult to detect true differences in radiation dose between methods and technology-a prerequisite for optimising radiation protection for image-guided treatments.
  •  
3.
  • Almén, Anja, et al. (författare)
  • Establishing paediatric diagnostic reference levels using reference curves - A feasibility study including conventional and CT examinations
  • 2021
  • Ingår i: Physica Medica. - : Elsevier BV. - 1120-1797. ; 87, s. 65-72
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To derive Regional Diagnostic Reference Levels (RDRL) for paediatric conventional and CT examinations using weight-based DRL curves and compare the outcome with DRL derived using the weight groups.METHODS: Data from 1722 examinations performed at 29 hospitals in four countries were included. DRL was derived for four conventional x-ray (chest, abdomen, pelvis, hips/joints) and two types of CT examinations (thorax, abdomen). DRL curves were derived using an exponential fit to the data using weight as an independent variable and the respective radiation dose indices (PKA, CTDIvol, DLP) as dependent variables. DRL was also derived for weight groups for comparison. The result was compared with national diagnostic reference level (NDRL) curves.RESULTS: The derived curves show similarities with the NDRL curves available and corresponded sufficiently well with DRL for weight groups using the same data set, if sufficient number of data was available.CONCLUSIONS: We conclude that weight-based DRL curves are a feasible approach and could be used together with DRL for weight groups. The main advantage of DRL curves is its application in the clinic. When the examination frequency is low, time to collect enough data to establish typical values for one or several weight groups may be unreasonably long. The curve provides the means to compare dose level faster and with fewer data points.
  •  
4.
  •  
5.
  • Almén, Anja, 1964, et al. (författare)
  • OPTIMISATION OF OCCUPATIONAL RADIATION PROTECTION IN IMAGE-GUIDED INTERVENTIONS: EXPLORING VIDEO RECORDINGS AS A TOOL IN THE PROCESS
  • 2016
  • Ingår i: Radiation protection dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 169:1-4, s. 425-429
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall purpose of this work was to explore how video recordings can contribute to the process of optimising occupational radiation protection in image-guided interventions. Video-recorded material from two image-guided interventions was produced and used to investigate to what extent it is conceivable to observe and assess dose-affecting actions in video recordings. Using the recorded material, it was to some extent possible to connect the choice of imaging techniques to the medical events during the procedure and, to a less extent, to connect these technical and medical issues to the occupational exposure. It was possible to identify a relationship between occupational exposure level to staff and positioning and use of shielding. However, detailed values of the dose rates were not possible to observe on the recordings, and the change in occupational exposure level from adjustments of exposure settings was not possible to identify. In conclusion, the use of video recordings is a promising tool to identify dose-affecting instances, allowing for a deeper knowledge of the interdependency between the management of the medical procedure, the applied imaging technology and the occupational exposure level. However, for a full information about the dose-affecting actions, the equipment used and the recording settings have to be thoroughly planned.
  •  
6.
  • Almén, Anja, 1964, et al. (författare)
  • Optimisation of occupational radiological protection in image-guided interventions: potential impact of dose rate measurements.
  • 2015
  • Ingår i: Journal of radiological protection : official journal of the Society for Radiological Protection. - : IOP Publishing. - 1361-6498. ; 35:1, s. 47-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The optimisation of occupational radiological protection is challenging and a variety of factors have to be considered. Physicians performing image-guided interventions are working in an environment with one of the highest radiation risk levels in healthcare. Appropriate knowledge about the radiation environment is a prerequisite for conducting the optimisation process. Information about the dose rate variation during the interventions could provide valuable input to this process. The overall purpose of this study was to explore the prerequisite and feasibility to measure dose rate in scattered radiation and to assess the usefulness of such data in the optimisation process.Using an active dosimeter system, the dose rate in the unshielded scattered radiation field was measured in a fixed point close to the patient undergoing an image-guided intervention. The measurements were performed with a time resolution of one second and the dose rate data was continuously timed in a data log. In two treatment rooms, data was collected during a 6month time period, resulting in data from 380 image-guided interventions and vascular treatments in the abdomen, arms and legs. These procedures were categorised into eight types according to the purpose of the treatment and the anatomical region involved.The dose rate varied substantially between treatment types, both regarding the levels and the distribution during the procedure. The maximum dose rate for different types of interventions varied typically between 5 and 100mSvh(-1), but substantially higher and lower dose rates were also registered. The average dose rate during a complete procedure was however substantially lower and varied typically between 0.05 and 1mSvh(-1). An analysis of the distribution disclosed that for a large part of the treatment types, the major amount of the total accumulated dose for a procedure was delivered in less than 10% of the exposure time and in less than 1% of the total procedure time.The present study shows that systematic dose rate measurements are feasible. Such measurements can be used to give a general indication of the exposure level to the staff and could serve as a first risk assessment tool when introducing new treatment types or x-ray equipment in the clinic. For example, it could provide an indication for when detailed eye dose measurements are needed. It also gives input to risk management considerations and the development of efficient routines for other radiological protection measures.
  •  
7.
  • Almén, Anja, et al. (författare)
  • Paediatric diagnostic reference levels for common radiological examinations using the European guidelines
  • 2022
  • Ingår i: British Journal of Radiology. - : British Institute of Radiology. - 0007-1285 .- 1748-880X. ; 95:1130
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The purpose of this study was to explore the feasibility to determine regional diagnostic reference levels (RDRLs) for paediatric conventional and CT examinations using the European guidelines and to compare RDRLs derived from weight and age groups, respectively. Methods: Data were collected from 31 hospitals in 4 countries, for 7 examination types for a total of 2978 patients. RDRLs were derived for each weight and age group, respectively, when the total number of patients exceeded 15. Results: It was possible to derive RDRLs for most, but not all, weight-based and age-based groups for the seven examinations. The result using weight-based and age-based groups differed substantially. The RDRLs were lower than or equal to the European and recently published national DRLs. Conclusion: It is feasible to derive RDRLs. However, a thorough review of the clinical indications and methodologies has to be performed previous to data collection. This study does not support the notion that DRLs derived using age and weight groups are exchangeable. Advances in knowledge: Paediatric DRLs should be derived using weight-based groups with access to the actual weight of the patients. DRLs developed using weight differ markedly from those developed with the use of age. There is still a need to harmonize the method to derive solid DRLs for paediatric radiological examinations.
  •  
8.
  • Almén, Anja, 1964, et al. (författare)
  • The process of optimisation of radiological protection – the significance of diagnostic reference levels
  • 2015
  • Ingår i: Optimisation in X-ray and Molecular Imaging 2015 - the Fourth Malmö Conference on Medical Imaging, Gothenburg, Sweden, 28-30 May 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The system of diagnostic reference levels in medicine has been presented as a tool to advice on when a local review of the procedures and equipment is warranted in order to determine whether the protection has been adequately optimised. The system is somewhat country specific, presumably due to different national regulations or guidelines, but as a whole relies on the same principles and standards. Diagnostic reference levels are typically set for standardised patients and procedures with minor considerations of the need to manage individual patient characteristics or specific medical tasks in the optimisation process. Optimisation of radiological protection should involve key aspects influencing the radiation dose to the patients and also include the needs of optimising the protection for each patient individually. The actual given radiation dose to the patient is affected by a number of factors, amongst other things equipment specific features and training of staff performing the examinations. This emphases the need to take a holistic approach and integrate different clinical processes - e.g. purchasing of equipment or the implementation of new examination protocols in the clinic – in the process of optimisation. Taking this approach gives the opportunity to evaluate the significance of the current system of diagnostic reference levels in the process of optimisation and to identify other reference levels supporting the process of optimisation. This paper will investigate the optimisation process and identify key instances where reference levels could provide support to the optimisation process. The issue of optimising the individual examination with regard to patient characteristics and medical indication will be specifically addressed.
  •  
9.
  • Andersson, Jonas, 1975-, et al. (författare)
  • Artificial intelligence and the medical physics profession-A Swedish perspective
  • 2021
  • Ingår i: Physica Medica-European Journal of Medical Physics. - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 88, s. 218-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is a continuous and dynamic discussion on artificial intelligence (AI) in present-day society. AI is expected to impact on healthcare processes and could contribute to a more sustainable use of resources allocated to healthcare in the future. The aim for this work was to establish a foundation for a Swedish perspective on the potential effect of AI on the medical physics profession. Materials and methods: We designed a survey to gauge viewpoints regarding AI in the Swedish medical physics community. Based on the survey results and present-day situation in Sweden, a SWOT analysis was performed on the implications of AI for the medical physics profession. Results: Out of 411 survey recipients, 163 responded (40%). The Swedish medical physicists with a professional license believed (90%) that AI would change the practice of medical physics but did not foresee (81%) that AI would pose a risk to their practice and career. The respondents were largely positive to the inclusion of AI in educational programmes. According to self-assessment, the respondents' knowledge of and workplace preparedness for AI was generally low. Conclusions: From the survey and SWOT analysis we conclude that AI will change the medical physics profession and that there are opportunities for the profession associated with the adoption of AI in healthcare. To overcome the weakness of limited AI knowledge, potentially threatening the role of medical physicists, and build upon the strong position in Swedish healthcare, medical physics education and training should include learning objectives on AI.
  •  
10.
  • Andersson, Martin, 1983, et al. (författare)
  • IDAC-Bio, A Software for Internal Dosimetry Based on the New ICRP Biokinetic Models and Specific Absorbed Fractions
  • 2022
  • Ingår i: HEALTH PHYSICS. - 0017-9078 .- 1538-5159. ; 123:2, s. 165-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation dosimetry is central to virtually all radiation safety applications, optimization, and research. It relates to various individuals and population groups and to miscellaneous exposure situations-including planned, existing, and emergency situations. The International Commission on Radiological Protection (ICRP) has developed a new computational framework for internal dose estimations. Important components are more detailed and improved anatomical models and more realistic biokinetic models than before. The ICRP is currently producing new organ dose and effective dose coefficients for occupational intakes of radionuclides (OIR) and environmental intakes of radionuclides (EIR), which supersede the earlier dose coefficients in Publication 68 and the Publication 72 series, respectively. However, the ICRP only publishes dose coefficients for a single acute intake of a radionuclide and for an integration period of 50 years for intake by adults and to age 70 years for intakes by pre-adults. The new software, IDAC-Bio, performs committed absorbed dose and effective dose calculations for a selectable intake scenario, e.g., for a continuous intake or an intake during x hours per day and y days per week, and for any selected integration time. The software uses the primary data and models of the ICRP biokinetic models and numerically solves the biokinetic model and calculates the absorbed doses to organs and tissues in the ICRP reference human phantoms. The software calculates absorbed dose using the nuclear decay data in ICRP publication 107. IDAC-Bio is a further development and an important addition to the internal dosimetry program IDAC-Dose2.1. The results generated by the software were validated against published ICRP dose coefficients. The potential of the software is illustrated by dose calculations for a nuclear power plant worker who had been exposed to varying levels of Co-60 and who had undergone repeated whole-body measurements, and for a hypothetical member of the public subject to future releases of Gd-148 from neutron spallation in tungsten at the European Spallation Source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (18)
konferensbidrag (9)
rapport (1)
licentiatavhandling (1)
recension (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Almén, Anja, 1964 (16)
Båth, Magnus, 1974 (13)
Almén, Anja (13)
Lundh, Charlotta, 19 ... (11)
Mattsson, Sören (9)
Sandblom, Viktor, 19 ... (8)
visa fler...
Andersson, Martin (5)
Rystedt, Hans, 1951 (5)
Eckerman, Keith (3)
Leggett, Richard (3)
Widmark, Anders (2)
Eriksson, Fredrik (2)
Guðjónsdóttir, Jónín ... (2)
Heimland, Nils (2)
Højgaard, Britta (2)
Waltenburg, Hanne (2)
von Wrangel, Alexa, ... (2)
Ivarsson, Jonas, 197 ... (2)
Medin, Joakim (2)
Tingberg, Anders (2)
Månsson, Lars Gunnar ... (2)
Eliasson, Linda (1)
Svanberg, Sune (1)
Nyholm, Tufve (1)
Alm Carlsson, Gudrun (1)
Alm Carlsson, Gudrun ... (1)
Ceberg, Crister (1)
Bäck, Torbjörn, 1967 ... (1)
Besjakov, Jack (1)
Nyberg, Ayse (1)
Olsson, Lars E (1)
Erlandsson, Bengt (1)
Sandborg, Michael (1)
Sandborg, Michael, 1 ... (1)
Falkenberg, Mårten, ... (1)
Hemdal, Bengt (1)
Andersson, Jonas, 19 ... (1)
Bernhardt, Peter, 19 ... (1)
Fransson, A. (1)
Andersson, Martin, 1 ... (1)
Leggett, Richard W. (1)
Pawel, David (1)
Eckerman, Keith F (1)
Powel, David (1)
Lillhök, Jan (1)
Mäkitalo, Åsa, 1966 (1)
Stenström, Kristina ... (1)
Ståhlbrandt, Henriet ... (1)
Jonasson, Pernilla (1)
Johansson, Lena (1)
visa färre...
Lärosäte
Göteborgs universitet (22)
Lunds universitet (12)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (28)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (4)
Samhällsvetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy