SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Anastasopoulos E) "

Search: WFRF:(Anastasopoulos E)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Aguilar, J., et al. (author)
  • Search for Leptonic CP Violation with the ESSnuSBplus Project
  • 2024
  • In: Letters in High Energy Physics. - : Andromeda Publishing And Academic Services LTD. - 2632-2714.
  • Journal article (peer-reviewed)abstract
    • ESSνSB is a design study for a next-generation long-baseline neutrino experiment that aims at the precise measurement of the CP-violating phase, δCP, in the leptonic sector at the second oscillation maximum. The conceptual design report published from the first phase of the project showed that after 10 years of data taking, more than 70% of the possible δCP range will be covered with 5σ C.L. to reject the no-CP-violation hypothesis. The expected value of δCP precision is smaller than 8◦ for all δCP values. The next phase of the project, the ESSνSB+, aims at using the intense muon flux produced together with neutrinos to measure the neutrino-nucleus cross-section, the dominant term of the systematic uncertainty, in the energy range of 0.2–0.6 GeV, using a Low Energy neutrinos from STORed Muons (LEnuSTORM) and a Low Energy Monitored Neutrino Beam (LEMNB) facilities.
  •  
3.
  • Aguilar, J., et al. (author)
  • Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment
  • 2024
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 109:11
  • Journal article (peer-reviewed)abstract
    • In this paper, we study scalar mediator induced nonstandard interactions (SNSIs) in the context of the ESSnuSB experiment. In particular, we study the capability of ESSnuSB to put bounds on the SNSI parameters and also study the impact of SNSIs in the measurement of the leptonic CP phase δCP. Existence of SNSIs modifies the neutrino mass matrix and this modification can be expressed in terms of three diagonal real parameters (ηee, ημμ, and ηττ) and three off-diagonal complex parameters (ηeμ, ηeτ, and ημτ). Our study shows that the upper bounds on the parameters ημμ and ηττ depend upon how Δm312 is minimized in the theory. However, this is not the case when one tries to measure the impact of SNSIs on δCP. Further, we show that the CP sensitivity of ESSnuSB can be completely lost for certain values of ηee and ημτ for which the appearance channel probability becomes independent of δCP.
  •  
4.
  • Aguilar, J., et al. (author)
  • Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment
  • 2024
  • In: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 109:11
  • Journal article (peer-reviewed)abstract
    • In this paper, we study scalar mediator induced nonstandard interactions (SNSIs) in the context of the ESSnuSB experiment. In particular, we study the capability of ESSnuSB to put bounds on the SNSI parameters and also study the impact of SNSIs in the measurement of the leptonic ?⁢? phase ??⁢?. Existence of SNSIs modifies the neutrino mass matrix and this modification can be expressed in terms of three diagonal real parameters (??⁢?, ??⁢?, and ??⁢?) and three off-diagonal complex parameters (??⁢?, ??⁢?, and ??⁢?). Our study shows that the upper bounds on the parameters ??⁢? and ??⁢? depend upon how Δ⁢?231 is minimized in the theory. However, this is not the case when one tries to measure the impact of SNSIs on ??⁢?. Further, we show that the ?⁢? sensitivity of ESSnuSB can be completely lost for certain values of ??⁢? and ??⁢? for which the appearance channel probability becomes independent of ??⁢?.
  •  
5.
  • Khaplanov, A., et al. (author)
  • Neutron beam monitors for the European spallation source
  • 2015
  • In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Conference paper (peer-reviewed)abstract
    • The European Spallation Source (ESS), currently under construction in Lund, Sweden, will house a suite of 16 user instruments for neutron scattering experiments. The spallation source of the ESS will emit relatively long, 2.8 ms, neutron pulses with an integrated flux that will greatly exceed that of current facilities. This leads to both large advancements in instrument performance as well as to increased length and complexity of the beam delivery systems. The instruments will each be equipped with neutron beam monitors used for data normalisation and analysis, as well as commissioning and diagnostics. In this paper we present the requirements for beam monitors for the ESS and the strategy to meet these in a standardised approach. A large range of specifications in efficiency, dynamic range, time and position resolution, compatible materials are needed. A new feature for neutron beam monitors for some locations, is the ability to measure time profile of each source pulse individually. In general, event mode readout will be used for monitors, similarly to other neutron detectors at the facility. A selection of detectors based on different technologies will be available. Monitors will be integrated with beam lines and choppers in a way that allows to freely choose the type of monitor based on final requirements of an instrument. For this end, space for a standardised module, housing a monitor will be provided in conjunction with chopper assemblies and elsewhere on each beam line.
  •  
6.
  • Messi, F., et al. (författare)
  • Gamma- and Fast Neutron- Sensitivity of 10B- Based Neutron Detectors at ESS
  • 2017
  • Ingår i: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings. - 9781538622827
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is designed to be the world's brightest neutron source. When it will be in operation, ESS will deliver an instantaneous neutron flux on detectors that will be without precedent. A down side of the high brightness will be the increase of background, especially from gamma-rays and fast-neutrons.Considering that scattering cross-sections of many samples tend to be relatively low and that the gamma- and fast-neutronbackgrounds tend to be considerable high at spallation facilities [Che +14], the signal-to-noise ratio of a measurement needs to be maximised. The sensitivity of a thermal-neutron detector to gamma-rays and to fast-neutrons is a very important characteristic, as it defines the best achievable signal-to-noise ratio for the measurement. It is therefore crucial to measure the gamma- and fast-neutron- sensitivities of all detectors that will be installed on the instruments at ESS.
  •  
7.
  • Piscitelli, F., et al. (författare)
  • The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy