SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersen Peter Professor) "

Sökning: WFRF:(Andersen Peter Professor)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Forsgren, Elin, 1987- (författare)
  • Using patient-derived cell models to investigate the role of misfolded SOD1 in ALS
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Protein misfolding and aggregation underlie several neurodegenerative proteinopathies including amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) was the first gene found to be associated with familial ALS. Overexpression of human mutant or wild type SOD1 in transgenic mouse models induces motor neuron (MN) degeneration and an ALS-like phenotype. SOD1 mutations, leading to the destabilization of the SOD1 protein is associated with ALS pathogenesis. However, how misfolded SOD1 toxicity specifically affects human MNs is not clear. The aim of this thesis was to develop patient-derived, cellular models of ALS to help understand the pathogenic mechanisms underlying SOD1.To understand which cellular pathways impact on the level of misfolded SOD1 in human cells, we established a model using patient-derived fibroblasts and quantified misfolded SOD1 in relation to disturbances in several ALS-related cellular pathways. Misfolded SOD1 levels did not change following reduction in autophagy, inhibition of the mitochondrial respiratory chain, or induction of endoplasmic reticulum (ER)-stress. However, inhibition of the ubiquitin-proteasome system (UPS) lead to a dramatic increase in misfolded SOD1 levels. Hence, an age-related decline in proteasome activity might underlie the late-life onset that is typically seen in SOD1 ALS.To address whether or not SOD1 misfolding is enhanced in human MNs, we used mixed MN/astrocyte cultures (MNCs) generated in vitro from patient-specific induced pluripotent stem cells (iPSCs). Levels of soluble misfolded SOD1 were increased in MNCs as well as in pure iPSC-derived astrocytes compared to other cell types, including sensory neuron cultures. Interestingly, this was the case for both mutant and wild type human SOD1, although the increase was enhanced in SOD1 FALS MNCs. Misfolded SOD1 was also found to exist in the same form as in mouse SOD1 overexpression models and was identified as a substrate for 20S proteasome degradation. Hence, the vulnerability of motor areas to ALS could be explained by increased SOD1 misfolding, specifically in MNs and astrocytes.To investigate factors that might promote SOD1 misfolding, we focussed on the stability of SOD1 mediated by a crucial, stabilizing C57-C146 disulphide bond and its redox status. Formation of disulphide bond is dependent on oxidation by O2 and catalysed by CCS. To investigate whether low O2 tension affects the stability of SOD1 in vitro we cultured fibroblasts and iPSC-derived MNCs under different oxygen tensions. Low oxygen tension promoted disulphide-reduction, SOD1 misfolding and aggregation. This response was much greater in MNCs compared to fibroblasts, suggesting that MNs may be especially sensitive to low oxygen tension and areas with low oxygen supply could serve as foci for ALS initiation.SOD1 truncation mutations often lack C146, and cannot adopt a native fold and are rapidly degraded. We characterized soluble misfolded and aggregated SOD1 in patient-derived cells carrying a novel SOD1 D96Mfs*8 mutation as well as in cells fom an unaffected mutation carrier. The truncated protein has a C-terminal fusion of seven non-native amino acids and was found to be extremely prone to aggregation in vitro. Since not all mutation carriers develop ALS, our results suggested this novel mutation is associated with reduced penetrance.In summary, patient derived cells are useful models to study factors affecting SOD1 misfolded and aggregation. We show for the first time that misfolding of a disordered and disease associated protein is enhanced in disease-related cell types. Showing that misfolded SOD1 exists in human cells in the same form as in transgenic mouse models strengthens the translatability of results obtained in the two species. Our results demonstrate disulphide-reduction and misfolding/aggregation of SOD1 and suggest that 20S proteasome could be an important therapeutic target for early stages of disease. This model provides a great opportunity to study pathogenic mechanisms of both familial and sporadic ALS in patient-derived models of ALS. 
  •  
2.
  • Bergh, Johan, 1983- (författare)
  • Structural investigation of SOD1 aggregates in ALS : identification of prion strains using anti-peptide antibodies
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative syndrome characterized by progressive degeneration of motor neurons that result in muscle wasting. The symptoms advance gradually to paralysis and eventually death. Most patients suffer from sporadic ALS (sALS) but 10% report a familial predisposition. Mutations in the gene encoding super­oxide dismutase-1 (SOD1) were the first identified cause of ALS. The disease mecha­nism is debated but there is a consensus that mutations in this protein confer a cytotoxic gain of function. SOD1 aggregates in motor neurons are hallmarks of ALS both in patients and in transgenic mouse models expressing a mutated form of human SOD1 (hSOD1). Recently, our group showed that SOD1 aggregates are present also in sALS patients, thus indicating a broader involvement of this protein in ALS. Misfolding and aggregation of SOD1 are dif­ficult to study in vivo since aggregate concentration in the central nervous system (CNS) is exceedingly low. The aim of this thesis was to find a method circumventing this problem to investigate the hSOD1 aggregate structure, distribution and spread in ALS disease.Many studies provide circumstantial evidence that the wild-type hSOD1 protein can be neurotoxic. We developed the first homozygous mouse model that highly overexpresses the wild-type enzyme. These mice developed an ALS-like syndrome and become terminally ill after around 370 days. Motor neuron loss and SOD1 aggregate accumulation in the CNS were observed. This lends further support to the hypothesis of a more general involve­ment of SOD1 in human disease.A panel of polyclonal antibodies covering 90% of the SOD1 protein was developed by our laboratory. These antibodies were shown to be highly specific for misfolded SOD1. Aggre­gated hSOD1 was purified from the CNS of terminally ill hSOD1 mice. Disordered segments in aggregated hSOD1 could be identified with these antibodies. Two aggregate strains with different structural architectures, molecular properties, and growth kinetics, were found using this novel method. The strains, denoted A and B, were also associated with different disease progression. Aggregates formed in vitro were structurally different from these strains. The results gave rise to questions about aggregate development and possible prion-like spread. To investigate this, inoculations of purified strain A and B hSOD1 seeds was performed in lumbar spinal cords of 100-day old mice carrying a hSOD1G85R mutation. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill 200 days earlier than mice inoculated with control preparation. Interestingly, a tem­plated spread of aggregates along the neuraxis was concomitantly observed, with strain A and B provoking the buildup of their respective hSOD1 aggregate structure. The phenotypes initiated by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. To further establish the importance of hSOD1 aggregates in human disease, purification and inoculation of aggregate seeds from spinal cords of ALS patients and mice carrying the hSOD1G127X mutation were performed. Inoculation of both human and mouse seeds as described above, induced strain A aggregation and premature fatal ALS-like disease.In conclusion, the data presented in this thesis provide a new, straightforward method for characterization of aggregate strains in ALS, and plausibly also in other neurodegen­erative diseases. Two different prion strains of hSOD1 aggregates were identified in mice that resulted in ALS-like disease. Emerging data suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism not only in hSOD1 transgenic models, but also in human ALS.
  •  
3.
  • Ekhtiari Bidhendi, Elaheh, 1986- (författare)
  • SOD1 prions transmit templated aggregation and fatal ALS-like disease
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by a progressive degeneration of the upper and lower motor neurons. The resulting paresis begins focally, usually in one muscle, and spreads contiguously, leading to muscle wasting, progressive paralysis and eventually death. 90% of all ALS cases are sporadic, with no genetic background (sALS), while 10% are hereditary or familial (fALS). The first identified cause of ALS was mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1), which are found in 3-6% of the ALS patients. Mutations in SOD1 confer a cytotoxic gain of function on the enzyme. Cytosolic inclusions containing aggregated SOD1 in motor neurons are a hallmark of ALS, both in patients and transgenic (Tg) mice carrying mutant human SOD1s (hSOD1). These inclusions have also been reported in sporadic and familial ALS cases without SOD1 mutations, suggesting a broader role of this protein in the ALS pathology. However, the mechanism of SOD1 misfolding and aggregation, and their contribution to the disease pathogenesis, is unclear.Our research group has recently identified two structurally different strains of hSOD1 aggregates (denoted A and B) in the central nervous system of Tg murine models expressing full-length hSOD1 variants.The aim of this thesis is to investigate if the SOD1 aggregation is a collateral byproduct in the process of the disease, or if it drives ALS pathogenesis. In addition, this work investigates the spreading characteristic of the disease in vivo.Human SOD1 A and B seeds were prepared from spinal cords of terminally ill hSOD1 Tg mice by ultracentrifugation through a density gradient. Minute amounts of the aggregate seeds were micro-inoculated into the lumbar spinal cord of asymptomatic recipient Tg mice, overexpressing G85R mutant hSOD1 (hSOD1G85R). Mice inoculated with A or B aggregates developed early-onset fatal ALS-like disease, becoming terminally ill around 100 days after inoculation. This is nearly 200 days earlier than hSOD1G85R Tg mice inoculated with a control preparation or non-inoculated mice. Concomitantly, exponentially growing templated hSOD1 aggregation developed in the recipient mice, spreading all along the neuraxis. The pathology provoked by the A and B strains differed in aggregation growth rates, disease progression rates, aggregate distribution along the neuraxis, rates of weight loss, end-stage amounts of aggregates, and histopathology.Next, we explored the existence of mutant hSOD1 aggregates with prion-like properties in the spinal cord of ALS patients.  To this end, aggregate seeds were prepared from the spinal cord of the autopsy material of an ALS patient carrying the hSOD1G127X truncation mutation, as well as from mice transgenic for the same mutation. The aggregates showed a strain A-like core structure. Inoculation of both the murine and human derived seeds into the lumbar spinal cord of hSOD1 expressing mice efficiently transmitted strain A aggregation, propagating rostrally throughout the neuraxis and causing premature fatal ALS-like disease. The inoculation of human or murine control seeds had no effect. The potency of the ALS patient-derived seed was exceedingly high, and the disease was initiated under conditions plausible to exist also in the human motor system. These results demonstrate for the first time, the presence of hSOD1 aggregates with prion-like properties in human ALS.We extended the exploration of hSOD1 prion mechanisms by inoculating another recipient mouse line, with wild-type-like stability and essentially normal SOD activity. Mice that are hemizygous for the hSOD1D90A transgene insertion do not develop ALS pathology and have normal murine lifespans (>700 days). Homozygous mice develop ALS-like disease around 400 days-of-age. Interestingly, inoculations of both strain A and B seeds into the lumbar spinal cord of hemizygous hSOD1D90A mice induced progressive hSOD1 aggregations and premature fatal ALS-like disease after around 250 and 350 days, respectively. In contrast, hemizygous hSOD1D90A mice inoculated with a mouse control seed died from senescence-related causes at ages beyond 700 days.Altogether, data in this thesis shows that the hSOD1 aggregate strains are ALS transmitting prions, suggesting that prion-like growth and spread of hSOD1 aggregation is the core pathogenic mechanism of SOD1-induced ALS.
  •  
4.
  • Haj-Hosseini, Neda, 1980- (författare)
  • Fluorescence Spectroscopy for Quantitative Demarcation of Glioblastoma Using 5-Aminolevulinic Acid
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Total resection of glioblastoma, the highly malignant brain tumor, is difficult to accomplish due to its diffuse growth and similarity to the surrounding brain tissue. A total resection is proven to increase patient survival. The aim of this thesis was to evaluate fiber-optical based fluorescence spectroscopy for quantitative demarcation of malignant brain tumors during the surgery. Five-aminolevulinic acid (5-ALA) was used as a fluorescence contrast agent that accumulated as protoporphyrin IX (PpIX) in the tumor.The method was evaluated at the Department of Neurosurgery, Linköping University Hospital. The patients (n = 22) received an oral dose of 5 mg/kg body weight 5-ALA two hours prior to craniotomy. Measurements with a developed fluorescence spectroscopy system were performed under the general procedure of surgery. The collected fluorescence spectra were quantified by defining a fluorescence ratio and the main challenges of measuring and quantifying spectra were investigated. The fluorescence ratio was compared to visual diagnosis of the surgeon, histopathological examination and ultrasound-based neuronavigation. The main challenges of using a fluorescence spectroscopy system in the operating room were the disturbing ambient light, photobleaching and blood interference which affect the signal quantification. The superimposition of ambient light was removed by modulating the system.Using principal component analysis (PCA) the photobleaching sequences could be described by three spectral components of autofluorescence, PpIX fluorescence and blue-shift. To investigate the photobleaching induced prior to the measurements, a dynamic model was developed based on the PCA derived spectral components. Modulation and increased power of the excitation light resulted in a faster photobleaching; however, photobleaching was saturated at higher excitation powers. The system was adjusted to induce minimal photobleaching. In addition, effect of blood absorption on the fluorescence spectrum was investigated experimentally by placing blood drops on skin and theoretically by using Beer-Lambert law. The theoretical model was used to compensate for the distorted fluorescence ratio. According to the theoretical model of blood interference, a total 300 µm blood layer blocked the brain fluorescence signal totally and when the fluorescence signal was partially blocked, the fluorescence ratio was overestimated. The fluorescence ratio was corrected for blood layers thinner than 50 µm.The tissue in and around the tumor was categorized into necrosis, low and high grade tumor and gliosis. The median fluorescence ratio confirmed with histopathological examination (n = 45) had a lower fluorescence ratio for low grade malignancies (0.3) than high grade malignancies (2.4) (p < 0.05). Gliosis (1.6) and necrosis (1.0) showed a moderate fluorescence ratio. Ultrasound-based navigation in combination with fluorescence spectroscopy showed improvement in the results; however, a more extensive study is needed to confirm benefits of the method combination. In conclusion, fluorescence spectroscopy of 5-ALA induced PpIX provided an objective method for differentiating tumor from the healthy tissue intra-operatively. Fluorescence ratios were indicative of tissue type and tumor malignancy degree.
  •  
5.
  • Williamson, Alice, et al. (författare)
  • Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake
  • 2023
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:6, s. 973-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
  •  
6.
  • Wuolikainen, Anna, 1980- (författare)
  • Metabolomics studies of ALS : a multivariate search for clues about a devastating disease
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease, motor neuron disease (MND) and Lou Gehrig’s disease, is a deadly, adult-onset neurodegenerative disorder characterized by progressive loss of upper and lower motor neurons, resulting in evolving paresis of the linked muscles. ALS is defined by classical features of the disease, but may present as a wide spectrum of phenotypes. About 10% of all ALS cases have been reported as familial, of which about 20% have been associated with mutations in the gene encoding for CuZn superoxide dismutase (SOD1). The remaining cases are regarded as sporadic. Research has advanced our understanding of the disease, but the cause is still unknown, no reliable diagnostic test exists, no cure has been found and the current therapies are unsatisfactory. Riluzole (Rilutek®) is the only registered drug for the treatment of ALS. The drug has shown only a modest effect in prolonging life and the mechanism of action of riluzole is not yet fully understood. ALS is diagnosed by excluding diseases with similar symptoms. At an early stage, there are numerous possible diseases that may present with similar symptoms, thereby making the diagnostic procedure cumbersome, extensive and time consuming with a significant risk of misdiagnosis. Biomarkers that can be developed into diagnostic test of ALS are therefore needed. The high number of unsuccessful attempts at finding a single diseasespecific marker, in combination with the complexity of the disease, indicates that a pattern of several markers is perhaps more likely to provide a diagnostic signature for ALS. Metabolomics, in combination with chemometrics, can be a useful tool with which to study human disease. Metabolomics can screen for small molecules in biofluids such as cerebrospinal fluid (CSF) and chemometrics can provide structure and tools in order to handle the types of data generated from metabolomics. In this thesis, ALS has been studied using a combination of metabolomics and chemometrics. Collection and storage of CSF in relation to metabolite stability have been extensively evaluated. Protocols for metabolomics on CSF samples have been proposed, used and evaluated. In addition, a new feature of data processing allowing new samples to be predicted into existing models has been tested, evaluated and used for metabolomics on blood and CSF. A panel of potential biomarkers has been generated for ALS and subtypes of ALS. An overall decrease in metabolite concentration was found for subjects with ALS compared to their matched controls. Glutamic acid was one of the metabolites found to be decreased in patients with ALS. A larger metabolic heterogeneity was detected among SALS cases compared to FALS. This was also reflected in models of SALS and FALS against their respective matched controls, where no significant difference from control was found for SALS while the FALS samples significantly differed from their matched controls. Significant deviating metabolic patterns were also found between ALS subjects carrying different mutations in the gene encoding SOD1.
  •  
7.
  • Bergemalm, Daniel, 1977- (författare)
  • Mutant superoxide dismutase-1-caused pathogenesis in amyotrophic lateral sclerosis
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating disease that affects people in their late mid-life, with fatal outcome usually within a few years. The progressive degeneration of neurons responsible for muscle movement (motor neurons) throughout the central nervous system (CNS) leads to muscle wasting and paralysis, and eventually affects respiratory function. Most cases have no familial background (sporadic) whereas about 10% of cases have relatives affected by the disease. A substantial number of familial cases are caused by mutations in the gene encoding superoxide dismutase-1 (SOD1). Since the initial discovery of this relationship about 17 years ago, numerous workers have tried to identify the pathogenicity of mutant SOD1 but without any final agreement or consensus regarding mechanism. The experiments in this thesis have been aimed at finding common pathogenic mechanisms by analyzing transgenic mouse models expressing mutant SOD1s with widely different properties.     Mitochondrial pathology and dysfunction have been reported in both ALS patients and murine models. We used density gradient ultracentrifugation for comparison of mitochondrial partitioning of SOD1 in our transgenic models. It was found that models with high levels of mutant protein, overloaded mitochondria with high levels of SOD1-protein whereas models with wild type-like levels of mutant protein did not. No significant association of the truncation mutant G127X with mitochondria was found. Thus, if mitochondrial dysfunction and pathology are fundamental for ALS pathogenesis this is unlikely to be caused by physical association of mutant SOD1 with mitochondria.     Density gradient ultracentrifugation was used to study SOD1 inclusions in tissues from an ALS patient with a mutant SOD1 (G127X). We found large amounts in the ventral horns of the spinal cord but also in the liver and kidney, although at lower levels. This showed that such signs of the disease can also be found outside the CNS.     This method was used further to characterize SOD1 inclusions with regard to the properties of mutant SOD1 and the presence of other proteins. The inclusions were found to be complex detergent-sensitive structures with mutant SOD1 reduced at disulfide C57-C146 being the major inclusion protein, constituting at least 50% of the protein content. Ten co-aggregating proteins were isolated, some of which were already known to be present in cellular inclusions. Of great interest was the presence of several proteins that normally reside in the endoplasmic reticulum (ER), which is in accordance with recent data suggesting that the unfolded protein response (UPR) has a role in ALS.     To obtain unbiased information on the pathogenesis of mutant SOD1, we performed a total proteome study on spinal cords from ALS transgenic mice. By multivariate analysis of the 1,800 protein spots detected, 420 (23%) were found to significantly contribute to the difference between transgenic and control mice. From 53 proteins finally identified, we found pathways such as mitochondrial function, oxidative stress, and protein degradation to be affected by the disease. We also identified a previously uncharacterized covalent SOD1 dimer.    In conclusion, the work described in this thesis suggests that mutant SOD1 affects the function of mitochondria, but not mainly through direct accumulation of SOD1 protein. It also suggests that SOD1 inclusions, present in both the CNS and peripheral tissues, mainly consist of SOD1 but they also trap proteins involved in the UPR. This might be deleterious as motor neurons, unable to renew themselves, are dependent on proper protein folding and degradation.
  •  
8.
  • Ingre, Caroline, 1977- (författare)
  • On the aetiology of ALS : a comprehensive genetic study
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Amyotrophic lateral sclerosis (ALS) is a deadly, progressive neuromuscular disease that affects individuals all over the world. About 10% of the patients have a familial predisposition (FALS) while the remainder of cases are isolated or sporadic (SALS) and of unknown cause. To date, the principal recognized risk factors for ALS are higher age, male gender, slim figure (BMI<23) and a family history of ALS. In 1993, Rosen et al. observed that some FALS cases were associated with mutations in the gene encoding the CuZn superoxide dismutase enzyme (SOD1). Since then, several mutations in the SOD1 gene have been discovered, and mutations in more than 18 other genes have been associated with causing ALS. The aim of this thesis was to identify new mutations associated with ALS pathogenesis, and by comparing patients from different countries, were we also able to identify population-specific genetic variations. The studies are referred to as I–V.Methods: With written informed consent and adhering to the tenets of the Declaration of Helsinki, through a national network of ALS clinicians´, venous blood samples were collected from ALS patients and healthy subjects in Europe and the USA. The patients were diagnosed according to the El Escorial criteria, and as having FALS according to the criteria of Byrne et al. (2011). The DNA variations were amplified by various PCR techniques. (I, III and IV) The amplicons of ataxin 2 (ATXN2), profilin 1 (PFN1), and vesicle-associated membrane protein type B (VAPB) were characterised by direct sequencing. (II) After quantitative PCR, a genotype-phenotype correlation was performed to assess whether the survival motor neuron gene (SMN) modulates the phenotype of ALS. (V) The amplicons of the 50 base pair deletion in the SOD1 promotor (50 bp) were separated by electrophoresis on agarose.Results: (I) We observed a significant association between CAG expansions in the ATXN2 gene and ALS in a European cohort. (II) Abnormal copy number of the SMN1 gene was identified as a risk factor in France, but not in Sweden. Homozygosity of the SMN2 deletion prolonged survival among Swedish ALS patients, compared to French patients. (III) We identified two mutations in the PFN1 gene, the novel p.Thr109Met mutation and the p.Gln117Gly mutation, in two unrelated FALS patients. (IV) In our cohort, we identified five VAPB mutations p.Asp130Glu, p.Ser160del, p.Asp162Glu, p.Met170Ile, and p.Arg184Trp, two of which are novel. (V) The 50 bp deletion upstream of the SOD1 gene was found in equal frequencies in both the patient and control cohorts. The 50 bp deletion did not affect SOD1 enzymatic activity. Furthermore, we found no differences in age of onset or disease duration in relation to the 50 bp deletion genotype.VIConclusions: (I) Our findings indicate that ATXN2 plays an important role in the pathogenesis of ALS, and that CAG expansions in ATXN2 are a significant risk factor for the disease. (II) We suggest that abnormal SMN1 gene copynumber cannot be considered a universal genetic susceptibility factor for ALS. We also propose that the effect of abnormal SMN2 gene copy number on ALS phenotype may differ between populations. (III) This work provides evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. The novel p.Thr109Met mutation also shows that disturbance of actin dynamics can cause motor neuron degeneration. (IV) We find it unlikely that the VAPB mutations cause ALS in our cohorts. (V) We find it unlikely that the 50 bp region contains important regulatory elements for SOD1 expression. This thesis supports the theory that ALS is a multigenetic disease, but there appears to be great genetic variation among apparently identical populations. These studies emphasise the importance of continuous genetic screening, to identify further mutations and genes involved in ALS disease, but it also highlights the importance of cooperation and comparison between countries.
  •  
9.
  • Keskin, Isil, 1987- (författare)
  • SOD, ORF and ALS: On the role of SOD1 and C9ORF72 in the pathogenesis of ALS
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amyotrophic lateral sclerosis (ALS) is characterized by adult-onset degeneration of upper and lower motor neurons. Symptoms begin focally in one muscle and then spread contiguously, resulting in progressive paralysis and death from respiratory failure. Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause, however, mutations in SOD1 were the first identified and are found in 1-9% of patients. Misfolded SOD1 aggregates in the CNS are hallmarks of ALS associated with SOD1 mutations. However, accumulation of misfolded or aggregated SOD1 protein has also been reported in sporadic and familial ALS without SOD1 mutations, suggesting that wild-type SOD1 could play a role in ALS pathology in general.The aims of this thesis are: 1) To describe the resulting disease phenotype and specific characteristics of the SOD1 protein carrying the stable disease- associated mutation L117V. 2) To set up cell-based in vitro models to study the mechanisms of SOD1 misfolding and aggregation under physiologically relevant expression levels. 3) To compare SOD1 activity in patient-derived samples and screen for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations.1) We identified a novel L117V SOD1 mutant in two families of Syrian origin that co-segregated with the disease. This mutation was associated with slow disease progression, reduced penetrance and a uniform phenotype. The L117V mutant protein was indistinguishable from wild-type SOD1 in terms of stability, dismutation activity and misfolding in patient-derived cell lines.2) We established patient-derived fibroblast and iPSC-MN lines expressing mutant SOD1 at physiological levels as in vitro models to study misfolding and aggregation of SOD1. We investigated the effects of several cellular pathway disturbances on SOD1 misfolding. Misfolded SOD1 was increased by inhibition of the ubiquitin-proteasome pathway in fibroblasts derived from both patients and controls. An age-related decline in proteasome activity could contribute to the late onset of ALS.Next, we studied the effects of low oxygen tension on misfolding and aggregation of SOD1 in patient-derived cells. Low O2 tensions were found to markedly increase C57-C146 disulphide reduction, misfolding and aggregation of SOD1. Importantly, the largest effects were detected in iPSC-MNs. This suggests that motor neurons are specifically vulnerable to misfolding and aggregation of SOD1 under low O2 tension.3) We compared the enzymatic activity of SOD1 in blood samples from a large number of ALS patients and controls. We screened for potential underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. No aberrations in copy number, other large structural changes in introns and exons or intronic mutations in the 30-50 bp flanking the exons were found in the 142 outliers, with either very low or very high SOD1 dismutation activities. However, hemoglobinopathies, including thalassemias and iron deficiency anemia, were associated with high SOD1/mg Hb ratios. Erythrocytes from patients with destabilizing SOD1 mutations showed half the normal activity. There were no significant differences in SOD1 activity between control individuals and ALS patients without a coding SOD1 mutation, or carriers of TBK1 mutations or the hexanucleotide repeat expansion in C9ORF72. Our result suggests that SOD1 enzymatic activity is not associated with the disease in non-SOD1 mutation ALS.
  •  
10.
  • Nordin, Peter (författare)
  • Mobile Robot Traversability Mapping : For Outdoor Navigation
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To avoid getting stuck or causing damage to a vehicle or its surroundings a driver must be able to identify obstacles and adapt speed to ground conditions. An automatically controlled vehicle must be able to handle these identifications and adjustments by itself using sensors, actuators and control software. By storing properties of the surroundings in a map, a vehicle revisiting an area can benefit from prior information.Rough ground may cause oscillations in the vehicle chassis. These can be measured by on-board motion sensors. For obstacle detection, a representation of the geometry of the surroundings can be created using range sensors. Information on where it is suitable to drive, called traversability, can be generated based on these kinds of sensor measurements.In this work, real semi-autonomous mobile robots have been used to create traverasbility maps in both simulated and real outdoor environments. Seeking out problems through experiments and implementing algorithms in an attempt to solve them has been the core of the work.Finding large obstacles in the vicinity of a vehicle is seldom a problem; accurately identifying small near-ground obstacles is much more difficult, however. The work additionally includes both high-level path planning, where no obstacle details are considered, and more detailed planning for finding an obstacle free path. How prior maps can be matched and merged in preparation for path planning operations is also shown. To prevent collisions with unforeseen objects, up-to-date traversability information is used in local-area navigation and obstacle avoidance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy