SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asif Farazee M. A.) "

Sökning: WFRF:(Asif Farazee M. A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • A Asif, Farazee M, 1980- (författare)
  • Circular Manufacturing Systems : A development framework with analysis methods and tools for implementation
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The society today lives on the philosophy of ‘take-make-use-dispose.’ In the long run, this is not sustainable as the natural resources and the waste carrying capacity of the earth are limited. Therefore, it is essential to reduce dependency on the natural resources by decoupling the growth from the consumption. In this venture, both the society and the manufacturing industry have a vital role to play. The society needs to shift towards Circular Economy that rests upon the philosophy of ‘take-make-use-reuse’ and the manufacturing industry has to be a major stakeholder in this shift. Despite being proven to be both economically and environmentally beneficial, successful examples of circular systems are few today. This is primarily due to two reasons; firstly, there is a lack of systemic and systematic approach to guide industries and secondly, there is a lack of analysis methods and tools that are capable of assessing different aspects of circular manufacturing systems. Taking on to these challenges, the objective of this research is to bring forward a framework with methods and decision support tools that are essential to implement circular manufacturing systems. The initial conceptual framework with the systemic approach is developed based on extensive review and analysis of research, which is further adapted for industrial implementation. Systematic analysis methods, decision support and implementation tools are developed to facilitate this adaptation. This development has been supported by four cases from diverse manufacturing sectors. Behind each decision support tool, there are analysis methods built upon mainly system dynamics principles. These tools are based on simulation platforms called Stella and Anylogic. Among other things, these tools are capable of assessing the performance of closed-loop supply chains, consequences of resource scarcity, potential gains from resource conservation and overall economic and environmental performance of circular manufacturing systems.
  •  
2.
  • A Asif, Farazee M, 1980-, et al. (författare)
  • Performance analysis of the closed loop supply chain
  • 2012
  • Ingår i: Journal of Remanufacturing. - Germany : Springer Science and Business Media LLC. - 2210-4690. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe question of resource scarcity and emerging pressure of environmental legislations has brought a new challenge for the manufacturing industry. On the one hand, there is a huge population that demands a large quantity of commodities; on the other hand, these demands have to be met by minimum resources and pollution. Resource conservative manufacturing (ResCoM) is a proposed holistic concept to manage these challenges. The successful implementation of this concept requires cross functional collaboration among relevant fields, and among them, closed loop supply chain is an essential domain. The paper aims to highlight some misconceptions concerning the closed loop supply chain, to discuss different challenges, and in addition, to show how the proposed concept deals with those challenges through analysis of key performance indicators (KPI).MethodsThe work presented in this paper is mainly based on the literature review. The analysis of performance of the closed loop supply chain is done using system dynamics, and the Stella software has been used to do the simulation. Findings The results of the simulation depict that in ResCoM; the performance of the closed loop supply chain is much enhanced in terms of supply, demand, and other uncertainties involved. The results may particularly be interesting for industries involved in remanufacturing, researchers in the field of closed loop supply chain, and other relevant areas. Originality The paper presented a novel research concept called ResCoM which is supported by system dynamics models of the closed loop supply chain to demonstrate the behavior of KPI in the closed loop supply chain.
  •  
3.
  • Adane, Tigist Fetene, et al. (författare)
  • System dynamics analysis of energy usage : Case studies in automotive manufacturing
  • 2012
  • Ingår i: SPS12 conference proceedings. ; , s. 1-9
  • Konferensbidrag (refereegranskat)abstract
    • Our life is strongly linked with the usage of natural resources. Energy is a necessity in everyday life and is often generated using non-renewable natural resources which are finite. Energy consumption in manufacturing industry is increasing and the way it is consumed is not sustainable. There is great concern about minimizing consumption of energy in manufacturing industry to sustain the natural carrying capacity of the ecosystem. This is one of the challenges in today’s industrial world.In this paper two case studies have been carried out in crankshaft machining and cylinder head casting processes. The outcome of this research enables the company to identify potential avenues to optimize energy usage and offers a decision support tool.
  •  
4.
  • Lieder, Michael, et al. (författare)
  • Towards Circular Economy Implementation: An agent-based simulation approach for business model changes
  • 2017
  • Ingår i: Autonomous Agents and Multi-Agent Systems. - : Springer. - 1387-2532 .- 1573-7454.
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces an agent-based approach to study customer behavior in terms of their acceptance of new business models in Circular Economy (CE) context. In a CE customers are perceived as integral part of the business and therefore customer acceptance of new business models becomes crucial as it determines the successful implementation of CE. However, tools or methods are missing to capture customer behavior to assess how customers will react if an organization introduces a new business model such as leasing or functional sales. The purpose of this research is to bring forward a quantitative analysis tool for identifying proper marketing and pricing strategies to obtain best fit demand behavior for the chosen new business model. This tool will support decision makers in determining the impact of introducing new (circular) business models. The model has been developed using an agent-based modeling approach which delivers results based on socio-demographic factors of a population and customers’ relative preferences of product attributes price, environmental friendliness and service-orientation. The implementation of the model has been tested using the practical business example of a washing machine. This research presents the first agent-based tool that can assess customer behavior and determine whether introduction of new business models will be accepted or not and how customer acceptance can be influenced to accelerate CE implementation. The tool integrates socio-demographic factors, product utility functions, social network structures and inter-agent communication in order to comprehensively describe behavior on individual customer level. In addition to the tool itself the results of this research indicates the need for systematic marketing strategies which emphasize CE value propositions in order to accelerate customer acceptance and shorten the transition time from linear to circular. Agent-based models are emphasized as highly capable to fill the gap between diffusion-based penetration of information and resulting behavior in the form of purchase decisions.
  •  
5.
  • Lieder, Michael, et al. (författare)
  • Towards circular economy implementation in manufacturing systems using a multimethod simulation approach to link design and business strategy
  • 2017
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer. - 0268-3768 .- 1433-3015. ; 93:5-8, s. 1953-1970
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent circular economy movement has raised awareness and interest about untapped environmental and economic potential in the manufacturing industry. One of the crucial aspects in the implementation of circular or closed-loop manufacturing approach is the design of circular products. While it is obvious that three post-use strategies, i.e., reuse, remanufacturing, and recycling, are highly relevant to achieve loop closure, it is enormously challenging to choose “the right” strategy (if at all) during the early design stage and especially at the single component level. One reason is that economic and environmental impacts of adapting these strategies are not explicit as they vary depending on the chosen business model and associated supply chains. In this scenario, decision support is essential to motivate adaptation of regenerative design strategies. The main purpose of this paper is to provide reliable decision support at the intersection of multiple lifecycle design and business models in the circular economy context to identify effects on cost and CO2 emissions. The development of this work consists of a systematic method to quantify design effort for different circular design options through a multi-method simulation approach. The simulation model combines an agent-based product architecture and a discrete event closed-loop supply chain model. Feasibility of the model is tested using a case of a washing machine provided by Gorenje d.d. Firstly, design efforts for reuse, remanufacturing, and recycling are quantified. Secondly, cost and emissions of different design options are explored with different business model configurations. Finally, an optimization experiment is run to identify the most cost-effective combination of reused, remanufactured, and recycled components for a business model chosen on the basis of the explorative study results.
  •  
6.
  • Rashid, Amir, et al. (författare)
  • Multiple Life Cycles Product Systems : Redefining the Manufacturing Paradigm for Resource Efficient Production and Consumption
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • The products and the business models developed for conventional open-loop product systems are unable to cope with the requirements for resource efficiency. This paper redefines the conventional paradigm of closed-loop product systems and outlines the novel concept of multiple lifecycle products. The newly developed conceptual framework considers the conservation of energy, material and value added with waste prevention and environment protection as integrated components of the product design and development strategy. It also presents innovative ideas regarding designing products with multiple life cycles, business model for closed-loop supply chain, empowering customers, and multi-stakeholder approach required for the transition towards resource efficient production and consumption.
  •  
7.
  • Rashid, Amir, et al. (författare)
  • Resource Conservative Manufacturing : an essential change in business and technology paradigm for sustainable manufacturing
  • 2013
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 57, s. 166-177
  • Tidskriftsartikel (refereegranskat)abstract
    • For sustainability of our future societies we need sustainable manufacturing strategies with resource and environment conservation as their integral part. In this perspective closed-loop supply chains are considered as the most feasible solution. However, their implementation within the paradigm of prevailing open-loop product systems seems extremely complicated and practically infeasible. This paper argues for a radical shift in thinking on the closed-loop systems and presents the novel concept of Resource Conservative Manufacturing (ResCoM). The ResCoM concept considers the conservation of energy, material and value added with waste prevention and environment protection as integrated components of the product design and development strategy. It also presents the innovative idea of products with multiple lifecycles where several lifecycles of predefined duration are determined already at the product design stage thus demanding for new design strategies and methodologies. To succeed with this concept ResCoM advocates for new approach to supply chain design and business models as well, where the customers are integral part of manufacturing enterprises and the product design is effectively connected with the supply chain design. This work concludes that the products, supply chains and the business models developed for open-loop product systems are unable to cope with the dynamics of closed-loop systems. The uncertainties associated with product returns are inherent to the conventional concept of lifecycle and closed-loop systems. The ResCoM concept has much better capability in dealing with these uncertainties while developing sustainable closed-loop systems. The presented work outlines and discusses the conceptual framework of ResCoM. A comprehensive work on the strategic and tactical issues in the implementation of the ResCoM concept will follow.
  •  
8.
  • Shoaib-ul-Hasan, Sayyed, Dr. 1986-, et al. (författare)
  • Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment : Implications in the Context of Circular Economy
  • 2021
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Life cycle assessment (LCA) is used frequently as a decision support tool for evaluating different design choices for products based on their environmental impacts. A life cycle usually comprises several phases of varying timespans. The amount of emissions generated from different life cycle phases of a product could be significantly different from one another. In conventional LCA, the emissions generated from the life cycle phases of a product are aggregated at the inventory analysis stage, which is then used as an input for life cycle impact assessment. However, when the emissions are aggregated, the temporal variability of inventory data is ignored, which may result in inaccurate environmental impact assessment. Besides, the conventional LCA does not consider the environmental impact of circular products with multiple use cycles. It poses difficulties in identifying the hotspots of emission-intensive activities with the potential to mislead conclusions and implications for both practice and policy. To address this issue and to analyze the embedded temporal variations in inventory data in a CE context, the paper proposes calculating the emission intensity for each life cycle phase. It is argued that calculating and comparing emission intensity, based on the timespan and amount of emissions for individual life cycle phases, at the inventory analysis stage of LCA offers a complementary approach to the traditional aggregate emission-based LCA approach. In a circular scenario, it helps to identify significant issues during different life cycle phases and the relevant environmental performance improvement opportunities through product, business model, and supply chain design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy