SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Azar Jimmy) "

Sökning: WFRF:(Azar Jimmy)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azar, Jimmy, et al. (författare)
  • Automated Classification of Glandular Tissue by Statistical Proximity Sampling
  • 2015
  • Ingår i: International Journal of Biomedical Imaging. - : Hindawi Limited. - 1687-4188 .- 1687-4196.
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the complexity of biological tissue and variations in staining procedures, features that are based on the explicit extraction of properties from subglandular structures in tissue images may have difficulty generalizing well over an unrestricted set of images and staining variations. We circumvent this problem by an implicit representation that is both robust and highly descriptive, especially when combined with a multiple instance learning approach to image classification. The new feature method is able to describe tissue architecture based on glandular structure. It is based on statistically representing the relative distribution of tissue components around lumen regions, while preserving spatial and quantitative information, as a basis for diagnosing and analyzing different areas within an image. We demonstrate the efficacy of the method in extracting discriminative features for obtaining high classification rates for tubular formation in both healthy and cancerous tissue, which is an important component in Gleason and tubule-based Elston grading. The proposed method may be used for glandular classification, also in other tissue types, in addition to general applicability as a region-based feature descriptor in image analysis where the image represents a bag with a certain label (or grade) and the region-based feature vectors represent instances.
  •  
2.
  • Azar, Jimmy, 1984- (författare)
  • Automated Tissue Image Analysis Using Pattern Recognition
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Automated tissue image analysis aims to develop algorithms for a variety of histological applications. This has important implications in the diagnostic grading of cancer such as in breast and prostate tissue, as well as in the quantification of prognostic and predictive biomarkers that may help assess the risk of recurrence and the responsiveness of tumors to endocrine therapy.In this thesis, we use pattern recognition and image analysis techniques to solve several problems relating to histopathology and immunohistochemistry applications. In particular, we present a new method for the detection and localization of tissue microarray cores in an automated manner and compare it against conventional approaches.We also present an unsupervised method for color decomposition based on modeling the image formation process while taking into account acquisition noise. The method is unsupervised and is able to overcome the limitation of specifying absorption spectra for the stains that require separation. This is done by estimating reference colors through fitting a Gaussian mixture model trained using expectation-maximization.Another important factor in histopathology is the choice of stain, though it often goes unnoticed. Stain color combinations determine the extent of overlap between chromaticity clusters in color space, and this intrinsic overlap sets a main limitation on the performance of classification methods, regardless of their nature or complexity. In this thesis, we present a framework for optimizing the selection of histological stains in a manner that is aligned with the final objective of automation, rather than visual analysis.Immunohistochemistry can facilitate the quantification of biomarkers such as estrogen, progesterone, and the human epidermal growth factor 2 receptors, in addition to Ki-67 proteins that are associated with cell growth and proliferation. As an application, we propose a method for the identification of paired antibodies based on correlating probability maps of immunostaining patterns across adjacent tissue sections.Finally, we present a new feature descriptor for characterizing glandular structure and tissue architecture, which form an important component of Gleason and tubule-based Elston grading. The method is based on defining shape-preserving, neighborhood annuli around lumen regions and gathering quantitative and spatial data concerning the various tissue-types.
  •  
3.
  • Azar, Jimmy C., et al. (författare)
  • Image segmentation and identification of paired antibodies in breast tissue
  • 2014
  • Ingår i: Computational & Mathematical Methods in Medicine. - : Hindawi Limited. - 1748-670X .- 1748-6718. ; , s. 647273:1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparing staining patterns of paired antibodies designed towards a specific protein but toward different epitopes of the protein provides quality control over the binding and the antibodies' ability to identify the target protein correctly and exclusively. We present a method for automated quantification of immunostaining patterns for antibodies in breast tissue using the Human Protein Atlas database. In such tissue, dark brown dye 3,3'-diaminobenzidine is used as an antibody-specific stain whereas the blue dye hematoxylin is used as a counterstain. The proposed method is based on clustering and relative scaling of features following principal component analysis. Our method is able (1) to accurately segment and identify staining patterns and quantify the amount of staining and (2) to detect paired antibodies by correlating the segmentation results among different cases. Moreover, the method is simple, operating in a low-dimensional feature space, and computationally efficient which makes it suitable for high-throughput processing of tissue microarrays.
  •  
4.
  •  
5.
  • Azar, Jimmy, et al. (författare)
  • Microarray Core Detection by Geometric Restoration
  • 2012
  • Ingår i: Analytical Cellular Pathology. - 0921-8912 .- 1878-3651. ; 35:5-6, s. 381-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-slide imaging of tissue microarrays (TMAs) holds the promise of automated image analysis of a large number of histopathological samples from a single slide. This demands high-throughput image processing to enable analysis of these tissue samples for diagnosis of cancer and other conditions. In this paper, we present a completely automated method for the accurate detection and localization of tissue cores that is based on geometric restoration of the core shapes without placing any assumptions on grid geometry. The method relies on hierarchical clustering in conjunction with the Davies-Bouldin index for cluster validation in order to estimate the number of cores in the image wherefrom we estimate the core radius and refine this estimate using morphological granulometry. The final stage of the algorithm reconstructs circular discs from core sections such that these discs cover the entire region of each core regardless of the precise shape of the core. The results show that the proposed method is able to reconstruct core locations without any evidence of localization error. Furthermore, the algorithm is more efficient than existing methods based on the Hough transform for circle detection. The algorithm's simplicity, accuracy, and computational efficiency allow for automated high-throughput analysis of microarray images.
  •  
6.
  • Gavrilovic, Milan, et al. (författare)
  • Blind Color Decomposition of Histological Images
  • 2013
  • Ingår i: IEEE Transactions on Medical Imaging. - 0278-0062 .- 1558-254X. ; 32:6, s. 983-994
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral signatures of the stained tissue, spectral overlap and spatial aliasing in acquisition, and noise at image acquisition. We present a blind method for color decomposition of histological images. The method decouples intensity from color information and bases the decomposition only on the tissue absorption characteristics of each stain. By modeling the charge-coupled device sensor noise, we improve the method accuracy. We extend current linear decomposition methods to include stained tissues where one spectral signature cannot be separated from all combinations of the other tissues' spectral signatures. We demonstrate both qualitatively and quantitatively that our method results in more accurate decompositions than methods based on non-negative matrix factorization and independent component analysis. The result is one density map for each stained tissue type that classifies portions of pixels into the correct stained tissue allowing accurate identification of morphological features that may be linked to cancer.
  •  
7.
  •  
8.
  • Hamid Muhammed, Hamed, et al. (författare)
  • Automatic characterization of the physiological condition of the carotid artery in 2D ultrasound image sequences using spatiotemporal and spatiospectral 2D maps
  • 2014
  • Ingår i: International Journal of Biomedical Imaging. - : Hindawi Limited. - 1687-4188 .- 1687-4196. ; 2014
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel method for characterizing and visualizing the progression of waves along the walls of the carotid artery is presented. The new approach is noninvasive and able to simultaneously capture the spatial and the temporal propagation of wavy patterns along the walls of the carotid artery in a completely automated manner. Spatiotemporal and spatiospectral 2D maps describing these patterns (in both the spatial and the frequency domains, resp.) were generated and analyzed by visual inspection as well as automatic feature extraction and classification. Three categories of cases were considered: pathological elderly, healthy elderly, and healthy young cases. Automatic differentiation, between cases of these three categories, was achieved with a sensitivity of 97.1% and a specificity of 74.5%. Two features were proposed and computed to measure the homogeneity of the spatiospectral 2D map which presents the spectral characteristics of the carotid artery wall's wavy motion pattern which are related to the physical, mechanical (e.g., elasticity), and physiological properties and conditions along the artery. These results are promising and confirm the potential of the proposed method in providing useful information which can help in revealing the physiological condition of the cardiovascular system.
  •  
9.
  • Hamid Muhammed, Hamed, et al. (författare)
  • Semi-Automated Classification of the Physiological Condition of the Carotid Artery in 2D Ultrasound Image Sequences
  • 2014
  • Ingår i: WSEAS Transactions on Biology and Biomedicine. - 1109-9518 .- 2224-2902. ; 11, s. 35-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: -A novel automated method for the classification of the physiological condition of the carotid arteryin 2D ultrasound image sequences is introduced. Unsupervised clustering was applied for the segmentationprocess in which both spatial and temporal information was utilized. Radial distension is then measured in theinner surface of the vessel wall, and this characteristic signal is extracted to reveal the detailed radial motion ofthe variable inner part of the vessel wall that is in contact with flowing blood. Characteristic differences in thistime signal were noticed among healthy young, healthy elderly and pathological elderly cases. The discreteFourier transform of the radial distension signal is then computed, and the area subtended by the transform iscalculated and utilized as a diagnostic feature. The method was tested successfully and could differentiateamong the categories of patients mentioned above. Therefore, this computer-aided method would significantlysimplify the task of medical specialists in detecting any defects in the carotid artery and thereby in detectingearly cardiovascular symptoms. The significance of the proposed method is that it is intuitive, semi-automatic,reproducible, and significantly reduces the reliance upon subjective measures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy