SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bandeira Elga) "

Sökning: WFRF:(Bandeira Elga)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandeira, Elga, et al. (författare)
  • Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation
  • 2023
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Allergic asthma is associated with airflow obstruction and hyper-responsiveness that arises from airway inflammation and remodeling. Cell therapy with mesenchymal stem cells (MSC) has been shown to attenuate inflammation in asthma models, and similar effects have recently been observed using extracellular vesicles (EV) obtained from these cells. Biologically functional vesicles can also be artificially generated from MSC by extruding cells through membranes to produce EV-mimetic nanovesicles (NV). In this study, we aimed to determine the effects of different MSC-derived vesicles in a murine model of allergic airway inflammation.Methods EV were obtained through sequential centrifugation of serum-free media conditioned by human bone marrow MSC for 24 h. NV were produced through serial extrusion of the whole cells through filters. Both types of vesicles underwent density gradient purification and were quantified through nanoparticle tracking analysis. C57BL/6 mice were sensitized to ovalbumin (OVA, 8 mu g), and then randomly divided into the OVA group (intranasally exposed to 100 mu g OVA for 5 days) and control group (exposed to PBS). The mice were then further divided into groups that received 2 x 10(9) EV or NV (intranasally or intraperitoneally) or PBS immediately following the first OVA exposure.Results Administration of EV and NV reduced cellularity and eosinophilia in bronchoalveolar lavage (BAL) fluid in OVA-sensitized and OVA-exposed mice. In addition, NV treatment resulted in decreased numbers of inflammatory cells within the lung tissue, and this was associated with lower levels of Eotaxin-2 in both BAL fluid and lung tissue. Furthermore, both intranasal and systemic administration of NV were effective in reducing inflammatory cells; however, systemic delivery resulted in a greater reduction of eosinophilia in the lung tissue.Conclusions Taken together, our results indicate that MSC-derived NV significantly reduce OVA-induced allergic airway inflammation to a level comparable to EV. Thus, cell-derived NV may be a novel EV-mimetic therapeutic candidate for treating allergic diseases such as asthma.
  •  
2.
  • Park, Kyong-Su, et al. (författare)
  • Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
  • 2019
  • Ingår i: Stem Cell Research & Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
  •  
3.
  • Park, Kyong-Su, et al. (författare)
  • Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.
  • 2019
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved.NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2×109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging.Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6h.Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.
  •  
4.
  • Svennerholm, Kristina, 1981, et al. (författare)
  • Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction.
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis induced cardiac dysfunction (SIC) is a severe complication to sepsis which significantly worsens patient outcomes. It is known that bacteria have the capacity to release outer membrane vesicles (OMVs), which are nano-sized bilayered vesicles composed of lipids and proteins, that can induce a fatal inflammatory response. The aim of this study was to determine whether OMVs from a uropathogenic Escherichia coli strain can induce cardiac dysfunction, and to elucidate any mechanisms involved. OMVs induced irregular Ca2+ oscillations with a decreased frequency in cardiomyocytes through recordings of intracellular Ca2+ dynamics. Mice were intraperitoneally injected with bacteria-free OMVs, which resulted in increased concentration of pro-inflammatory cytokine levels in blood. Cytokines were increased in heart lysates, and OMVs could be detected in the heart after OMVs injection. Troponin T was significantly increased in blood, and echocardiography showed increased heart wall thickness as well as increased heart rate. This study shows that E. coli OMVs induce cardiac injury in vitro and in vivo, in the absence of bacteria, and may be a causative microbial signal in SIC. The role of OMVs in clinical disease warrant further studies, as bacterial OMVs in addition to live bacteria may be good therapeutic targets to control sepsis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy