SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belahcen Anouar Professor) "

Sökning: WFRF:(Belahcen Anouar Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bitsi, Konstantina (författare)
  • On Electrical Machine Topologies for Electric Vehicle Applications
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The deployment of electric vehicles is considered a viable solution towardsreducing the global greenhouse-gas emissions and fossil-fuel consumption. Inorder to produce highly efficient and economically feasible electrical drivesystems, the selection of suitable electric motor designs is a key step.The target of this work is to identify, analyze and compare suitable elec-trical machine topologies for automotive applications based on highly coupledand conflicting criteria. For this purpose, an evolutionary multi-objective op-timization is developed that can yield a set of Pareto-optimal solutions and,thus, offer different compromises among the considered design-objectives. Theefficacy of the algorithm is demonstrated, rendering it an important tool forthe subsequent analysis.In the first part of this thesis, the investigation of pole-phase changinginduction machines is presented. A special induction machine topology withwound, independently-controlled stator coils (WICSC) is introduced. Thestator-winding configuration in this machine permits the individual energiza-tion and current control of the toroidal coil in each stator slot, thus facilitatingthe real-time change of both phase and pole number. The 2D magnetic and3D thermal finite-element method (FEM) models of this machine are devel-oped, as well as an analytical transient model of the current dynamics. Adetailed investigation of the behavior of pole-phase changing induction ma-chines and the impact of their design on the selection of optimum pole-phaseoperations throughout the entire operating region is performed. Specifically,three WICSC machines that were originally designed with 2, 4 and 6 fixedmagnetic poles are evaluated as pole-phase changing machines with the aim ofdetermining the overall improvement in terms of torque per ampere capabilityand efficiency.The second part of this work is focused on the design and performance ofaxial-flux induction machines (AFIMs). An electromagnetic sizing algorithmfor the design of AFIMs is developed, which adopts a geometrical approachto the design problem, while minimizing the use of empirical factors. Theeffectiveness of this algorithm is experimentally validated, using a commercialdouble-stator AFIM utilized as an integrated starter generator in a hybridelectric vehicle application. Moreover, in order to assess the benefits of pole-changing in axial-flux structures, the optimization of an interior-permanentmagnet synchronous machine, a radial-flux WICSC machine and a double-rotor axial-flux WICSC machine is carried out for a heavy vehicle applicationand the comparison of their Pareto-optimal solutions is presented.
  •  
2.
  • Pérez-Loya, J. J. (författare)
  • Analysis and control of magnetic forces in synchronous machines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In a synchronous machine, radial, tangential, and axial forces are generated. In this thesis, three different technologies to control them are proposed. The first one, involves the utilization of the radial forces that arise between the rotor and the stator. This is achieved by segmenting the rotor field winding into groups of poles and controlling their corresponding magnetization individually. This technology is particularly useful to achieve magnetic balance and to create controllable radial forces. The second technology, involves the control of the rotor field in order to influence the tangential forces that produce torque. This is achieved by inverting the rotor field winding polarity with respect to the stator field. With this technique, breaking and accelerating torques can be created. It is particularly useful to start a synchronous machine. Finally, the application of axial forces with a magnetic thrust bearing is discussed. The main benefits of this technology are higher efficiency and increased reliability.The work presented in this thesis was carried out within the Division of Electricity in the Department of Engineering Sciences at Uppsala University. It is based on original research supported by analytical calculations, computational simulations and extensive experimental work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy