SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bennett Keiryn L) "

Sökning: WFRF:(Bennett Keiryn L)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sialana, Fernando J., et al. (författare)
  • Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels
  • 2016
  • Ingår i: Proteomics. - : WILEY-BLACKWELL. - 1615-9853 .- 1615-9861. ; 16:22, s. 2911-2920
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular composition of synaptic signal transduction machineries shapes synaptic neurotransmission. The repertoire of receptors, transporters and channels (RTCs) comprises major signaling events in the brain. RTCs are conventionally studied by candidate immunohistochemistry and biochemistry, which are low throughput with resolution greatly affected by available immunoreagents and membrane interference. Therefore, a comprehensive resource of synaptic brain RTCs is still lacking. In particular, studies on the detergent-soluble synaptosomal fraction, known to contain transporters and channels, are limited. We, therefore, performed sub-synaptosomal fractionation of rat cerebral cortex, followed by trypsin/chymotrypsin sequential digestion of a detergent-soluble synaptosomal fraction and a postsynaptic density preparation, stable-isotope tryptic peptide labeling and liquid chromatography mass spectrometry. Based on the current study, a total of 4784 synaptic proteins were submitted to the ProteomExchange database (PXD001948), including 274 receptors, 394 transporters/channels and 1377 transmembrane proteins. Function-based classification assigned 1781 proteins as probable drug targets with 834 directly linked to brain disorders. The analytical approach identified 499 RTCs that are not listed in the largest, curated database for synaptosomal proteins (SynProt). This is a threefold RTC increase over all other data collected to date. Taken together, we present a protein discovery resource that can serve as a benchmark for future molecular interrogation of synaptic connectivity.
  •  
3.
  • Licciardello, Marco P., et al. (författare)
  • A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor
  • 2017
  • Ingår i: Nature Chemical Biology. - : Nature Publishing Group. - 1552-4450 .- 1552-4469. ; 13:7, s. 771-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for gamma-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.
  •  
4.
  • Upadhyay, Arunkumar S., et al. (författare)
  • Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
  • 2014
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 16:6, s. 834-848
  • Tidskriftsartikel (refereegranskat)abstract
    • Viperin is an interferon-induced protein with a broad antiviral activity. This evolutionary conserved protein contains a radical S-adenosyl-l-methionine (SAM) domain which has been shown in vitro to hold a [4Fe-4S] cluster. We identified tick-borne encephalitis virus (TBEV) as a novel target for which human viperin inhibits productionof the viral genome RNA. Wt viperin was found to require ER localization for full antiviral activity and to interact with the cytosolic Fe/S protein assembly factor CIAO1. Radiolabelling in vivo revealed incorporation of Fe-55, indicative for the presence of an Fe-S cluster. Mutation of the cysteine residues ligating the Fe-S cluster in the central radical SAM domain entirely abolished both antiviral activity and incorporation of Fe-55. Mutants lacking the extreme C-terminal W361 did not interact with CIAO1, were not matured, and were antivirally inactive. Moreover, intracellular removal of SAM by ectopic expression of the bacteriophage T3 SAMase abolished antiviral activity. Collectively, our data suggest that viperin requires CIAO1 for [4Fe-4S] cluster assembly, and acts through an enzymatic, Fe-S cluster- and SAM-dependent mechanism to inhibit viral RNA synthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy