SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Beran G) "

Search: WFRF:(Beran G)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cousin, E., et al. (author)
  • Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019
  • 2022
  • In: Lancet Diabetes & Endocrinology. - : Elsevier BV. - 2213-8587. ; 10:3, s. 177-192
  • Journal article (peer-reviewed)abstract
    • Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990-2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73.7% (68.3 to 77.4) were classified as due to type 1 diabetes. The age-standardised death rate was 0.50 (0.44 to 0.58) per 100 000 population, and 15 900 (97.5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0.13 (0.12 to 0.14) per 100 000 population in the high SDI quintile, 0.60 (0.51 to 0.70) per 100 000 population in the low-middle SDI quintile, and 0.71 (0.60 to 0.86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r(2)=0.62). From 1990 to 2019, age-standardised death rates decreased globally by 17.0% (-28.4 to -2.9) for all diabetes, and by 21.0% (-33.0 to -5.9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (-13.6% [-28.4 to 3.4]) and for type 1 diabetes (-13.6% [-29.3 to 8.9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Fenske, J., et al. (author)
  • BEER-The Beamline for European Materials Engineering Research at the ESS
  • 2016
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 746:1
  • Journal article (peer-reviewed)abstract
    • The Beamline for European Materials Engineering Research (BEER) will be built at the European Spallation Source (ESS). The diffractometer utilizes the high brilliance of the long-pulse neutron source and offers high instrument flexibility. It includes a novel chopper technique that extracts several short pulses out of the long pulse, leading to substantial intensity gain of up to an order of magnitude compared to pulse shaping methods for materials with high crystal symmetry. This intensity gain is achieved without compromising resolution. Materials of lower crystal symmetry or multi-phase materials will be investigated by additional pulse shaping methods. The different chopper set-ups and advanced beam extracting techniques offer an extremely broad intensity/resolution range. Furthermore, BEER offers an option of simultaneous SANS or imaging measurements without compromising diffraction investigations. This flexibility opens up new possibilities for in-situ experiments studying materials processing and performance under operation conditions. To fulfil this task, advanced sample environments, dedicated to thermo-mechanical processing, are foreseen.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view