SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjerkeli Per 1977) "

Sökning: WFRF:(Bjerkeli Per 1977)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergman, Per, 1960, et al. (författare)
  • Emission from HCN and CH3OH in comets Onsala 20-m observations and radiative transfer modelling
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim of this work is to characterise HCN and CH3OH emission from recent comets. Methods. We used the Onsala 20-m telescope to search for millimetre transitions of HCN towards a sample of 11 recent and mostly bright comets in the period from December 2016 to November 2019. Also, CH3OH was searched for in two comets. The HCN sample includes the interstellar comet 2I/Borisov. For the short-period comet 46P/Wirtanen, we were able to monitor the variation of HCN emission over a time-span of about one month. We performed radiative transfer modelling for the observed molecular emission by also including time-dependent effects due to the outgassing of molecules. Results. HCN was detected in six comets. Two of these are short-period comets and four are long-period. Six methanol transitions were detected in 46P/Wirtanen, enabling us to determine the gas kinetic temperature. From the observations, we determined the molecular production rates using time-dependent radiative transfer modelling. For five comets, we were able to determine that the HCN mixing ratios lie near 0.1% using contemporary water production rates, Q(H2O), taken from other studies. This HCN mixing ratio was also found to be typical in our monitoring observations of 46P/Wirtanen but here we notice deviations of up to 0.2% on a daily timescale which could indicate short-time changes in outgassing activity. From our radiative transfer modelling of cometary comae, we find that time-dependent effects on the HCN level populations are of the order of 5-15% when Q(H2O) is around 2 x 10(28) mol s(-1). The effects may be stronger for comets with lower Q(H2O). The exact details of the time-dependent effects depend on the amount of neutral and electron collisions, radiative pumping, and molecular parameters such as the spontaneous rate coefficient.
  •  
2.
  • Bjerkeli, Per, 1977, et al. (författare)
  • H2O line mapping at high spatial and spectral resolution Herschel observations of the VLA 1623 outflow
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. Article Number: A29 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Apart from being an important coolant, water is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the water emitting gas, however, are not fully understood yet. Using the Herschel Space Observatory, it is now possible to observe water emission from supersonic molecular outflows at high spectral and spatial resolution. Several molecular outflows from young stars are currently being observed as part of the WISH (Water In Star-forming regions with Herschel) key program. Aims. We aim to determine the abundance and distribution of water, its kinematics, and the physical conditions of the gas responsible for the water emission. The observed line profile shapes help us understand the dynamics in molecular outflows. Methods. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. Results. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The water emission originates in a region where temperatures are comparable to that of the warm H-2 gas (T greater than or similar to 200 K). Thus, the water emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The water column densities at the CO peak positions are low, i.e. N(H2O) similar or equal to (0.03-10) x 10(14) cm(-2). Conclusions. The water abundance with respect to H-2 in the extended outflow is estimated at X(H2O)
  •  
3.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Herschel observations of the Herbig-Haro objects HH52-54
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The emission from Herbig-Haro objects and supersonic molecular outflows is understood as cooling radiation behind shocks, which are initiated by a (proto-)stellar wind or jet. Within a given object, one often observes both dissociative (J-type) and non-dissociative (C-type) shocks, owing to the collective effects of internally varying shock velocities. Aims. We aim at the observational estimation of the relative contribution to the cooling by CO and H(2)O, as this provides decisive information for understanding the oxygen chemistry behind interstellar shock waves. Methods. The high sensitivity of HIFI, in combination with its high spectral resolution capability, allowed us to trace the H(2)O outflow wings at an unprecedented signal-to-noise ratio. From the observation of spectrally resolved H(2)O and CO lines in the HH52-54 system, both from space and from the ground, we arrived at the spatial and velocity distribution of the molecular outflow gas. Solving the statistical equilibrium and non-LTE radiative transfer equations provides us with estimates of the physical parameters of this gas, including the cooling rate ratios of the species. The radiative transfer is based on an accelerated lambda iteration code, where we use the fact that variable shock strengths, distributed along the front, are naturally implied by a curved surface. Results. Based on observations of CO and H(2)O spectral lines, we conclude that the emission is confined to the HH54 region. The quantitative analysis of our observations favours a ratio of the CO-to-H(2)O-cooling-rate >> 1. Formally, we derived the ratio A(CO)/A(o-H(2)O) = 10, which is in good agreement with earlier determination of 7 based on ISO-LWS observations. From the best-fit model to the CO emission, we arrive at an H(2)O abundance close to 1 x 10(-5). The line profiles exhibit two components, one that is triangular and another that is a superposed, additional feature. This additional feature is likely to find its origin in a region that is smaller than the beam where the ortho-water abundance is smaller than in the quiescent gas. Conclusions. Comparison with recent shock models indicate that a planar shock cannot easily explain the observed line strengths and triangular line profiles. We conclude that the geometry can play an important role. Although abundances support a scenario where J-type shocks are present, higher cooling rate ratios are derived than predicted by these types of shocks.
  •  
4.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Physical properties of outflows Comparing CO- and H2O-based parameters in Class 0 sources
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The observed physical properties of outflows from low-mass sources put constraints on possible ejection mechanisms. Historically, these quantities have been derived from CO using ground-based observations. It is, therefore, important to investigate whether parameters such as momentum rate (thrust) and mechanical luminosity (power) are the same when different molecular tracers are used.Aims. Our objective is to determine the outflow momentum, dynamical time-scale, thrust, energy, and power using CO and H2O as tracers of outflow activity.Methods. Within the framework of the Water In Star-forming regions with Herschel (WISH) key program, three molecular outflows from Class 0 sources have been mapped using the Heterodyne Instrument for the Far Infrared (HIFI) instrument aboard Herschel. We used these observations together with previously published H-2 data to infer the physical properties of the outflows. We compared the physical properties derived here with previous estimates based on CO observations.Results. Inspection of the spatial distribution of H2O and H-2 confirms that these molecules are co-spatial. The most prominent emission peaks in H-2 coincide with strong H2O emission peaks and the estimated widths of the flows when using the two tracers are comparable.Conclusions. For the momentum rate and the mechanical luminosity, inferred values are not dependent on which tracer is used, i.e. the values agree to within a factor of 4 and 3, respectively.
  •  
5.
  • Liseau, René, 1949, et al. (författare)
  • Multi-line detection of O2 toward rho Ophiuchi A
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O-2, and water, H2O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O-2 in the dense star-forming interstellar medium. Aims. Only toward rho OphA did Odin detect a very weak line of O-2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O-2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O-2 spectra toward selected positions in the rho Oph A core. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. Results. The N-J = 3(3)-1(2) line at 487.2 GHz is clearly detected toward all three observed positions in the rho Oph A core. In addition, an oversampled map of the 5(4)-3(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O-2 emitting gas appears to vary quite substantially, with warm gas (greater than or similar to 50 K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O-2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O-2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O-2) = 3 to greater than or similar to 6 x 10(15) cm(-2). Beam-averaged O-2 abundances are about 5 x 10(-8) relative to H-2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire rho Oph A core. We speculate that one of the reasons for the generally very low detection rate of O-2 is the short period of time during which O-2 molecules are reasonably abundant in molecular clouds.
  •  
6.
  • Wirström, Eva, 1977, et al. (författare)
  • Effect of the 3D distribution on water observations made with the SWI: I. Ganymede
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Characterising and understanding the atmospheres of Jovian icy moons is one of the key exploration goals of the Submillimetre Wave Instrument (SWI), which is to be flown on ESA's Jupiter Icy Moons Explorer (JUICE) mission. Aims. The aim of this paper is to investigate how and under which conditions a 3D asymmetric distribution of the atmosphere may affect the SWI observations. In this work we target the role of phase angle for both nadir and limb geometries for unresolved and partially resolved disc observations from large distances.Methods. We adapted the LIME software package, a 3D non-local thermodynamical equilibrium radiative transfer model, to evaluate ortho-H2O populations and synthesise the simulated SWI beam spectra for different study cases of Ganymede's atmosphere. The temperature and density vertical distributions were adopted from a previous work. The study cases presented here were selected according to the distance and operational scenarios of moon monitoring anticipated for SWI during the Jupiter phase of the JUICE mission. Results. We demonstrate that nadir and limb observations at different phase angles will modify the line amplitude and width. Unresolved observations where both absorption against surface continuum and limb emission contributes within the beam will lead to characteristic line wing emission, which may also appear in pure nadir geometry for specific phase angles. We also find that for Ganymede, the 3D non-local thermodynamical equilibrium populations are more highly excited in the upper atmosphere near the sub-solar region than they are in 1D spherically symmetric models. Finally, the 3D radiative transfer is better suited to properly simulate spectral lines for cases where density or population gradients exist along the line of sight.
  •  
7.
  • Benz, A. O., et al. (författare)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
8.
  • Bergin, E. A., et al. (författare)
  • Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
  •  
9.
  • Bjerkeli, Per, 1977, et al. (författare)
  • A young bipolar outflow from IRAS 15398-3359
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims. We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods. Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results. CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H-3(+) in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than similar to 1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.
  •  
10.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Kinematics around the B335 protostar down to au scales
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The relationship between outflow launching and formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Millimetre/sub-millimetre Array (ALMA) has carried out long-baseline observations towards a handful of sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematic and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We use ALMA in its longest-baseline configuration to observe emission from CO isotopologs, SiO, SO$_2$ and CH$_3$OH. The proximity of B335 provides a resolution of ~3 au (0.03''). We also combine our long-baseline data with archival data to produce a high-fidelity image covering scales up to 700 au (7''). Results. $^{12}$CO has a X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au of the protostar, while short-baseline continuum emission follows the $^{12}$CO outflow and cavity walls. Methanol is detected within ~30 au of the protostar. SiO is also detected in the vicinity of the protostar, but extended along the outflow. Conclusions. The $^{12}$CO outflow shows no clear signs of rotation at distances $\gtrsim$30 au from the protostar. SiO traces the protostellar jet on small scales, but without obvious rotation. CH$_3$OH and SO$_2$ trace a region <16 au in diameter, centred on the continuum peak, which is clearly rotating. Using episodic, high-velocity, $^{12}$CO features, we estimate the launching radius of the outflow to be <0.1 au and dynamical timescales on the order of a few years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy