SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boger Heather A) "

Sökning: WFRF:(Boger Heather A)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wuttke, Matthias, et al. (författare)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
2.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
3.
  • Quintero, E M, et al. (författare)
  • Glial cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeruleus-hippocampal noradrenergic pathway.
  • 2004
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522. ; 124:1, s. 137-46
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been shown that the noradrenergic (NE) locus coeruleus (LC)-hippocampal pathway plays an important role in learning and memory processing, and that the development of this transmitter pathway is influenced by neurotrophic factors. Although some of these factors have been discovered, the regulatory mechanisms for this developmental event have not been fully elucidated. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor influencing LC-NE neurons. We have utilized a GDNF knockout animal model to explore its function on the LC-NE transmitter system during development, particularly with respect to target innervation. By transplanting various combinations of brainstem (including LC) and hippocampal tissues from wildtype or GDNF knockout fetuses into the brains of adult wildtype mice, we demonstrate that normal postnatal development of brainstem LC-NE neurons is disrupted as a result of the GDNF null mutation. Tyrosine hydroxylase immunohistochemistry revealed that brainstem grafts had markedly reduced number and size of LC neurons in transplants from knockout fetuses. NE fiber innervation into the hippocampal co-transplant from an adjacent brainstem graft was also influenced by the presence of GDNF, with a significantly more robust innervation observed in transplants from wildtype fetuses. The most successful LC/hippocampal co-grafts were generated from fetuses expressing the wildtype GDNF background, whereas the most severely affected transplants were derived from double transplants from null-mutated fetuses. Our data suggest that development of the NE LC-hippocampal pathway is dependent on the presence of GDNF, most likely through a target-derived neurotrophic function.
  •  
4.
  • af Bjerkén, Sara, et al. (författare)
  • Effects of glial cell line-derived neurotrophic factor deletion on ventral mesencephalic organotypic tissue cultures.
  • 2007
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 1133:1, s. 10-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cell line-derived neurotrophic factor (GDNF) is potent for survival and promotion of nerve fibers from midbrain dopamine neurons. It is also known to exert different effects on specific subpopulations of dopamine neurons. In organotypic tissue cultures, dopamine neurons form two diverse nerve fiber growth patterns, targeting the striatum differently. The aim of this study was to investigate the effect of GDNF on the formation of dopamine nerve fibers. Organotypic tissue cultures of ventral mesencephalon of gdnf gene-deleted mice were studied. The results revealed that dopamine neurons survive in the absence of GDNF. Tyrosine hydroxylase immunoreactivity demonstrated, in gdnf knockout and wildtype cultures, nerve fiber formation with two separate morphologies occurring either in the absence or the presence of astrocytes. The outgrowth that occurred in the absence of astrocytes was unaffected by gdnf deletion, whereas nerve fibers guided by the presence of astrocytes were affected in that they reached significantly shorter distances from the gdnf gene-deleted tissue slice, compared to those measured in wildtype cultures. Treatment with GDNF reversed this effect and increased nerve fiber density independent of genotype. Furthermore, migration of astrocytes reached significantly shorter distances from the tissue slice in GDNF knockout compared to wildtype cultures. Exogenous GDNF increased astrocytic migration in gdnf gene-deleted tissue cultures, comparable to lengths observed in wildtype tissue cultures. In conclusion, cultured midbrain dopamine neurons survive in the absence of GDNF, and the addition of GDNF improved dopamine nerve fiber formation - possibly as an indirect effect of astrocytic stimulation.
  •  
5.
  • Hamlett, Eric D., et al. (författare)
  • Neuronal exosomes reveal Alzheimer's disease biomarkers in Down syndrome
  • 2017
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 13:5, s. 541-549
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid-β (Aβ) peptides and phosphorylated-tau in neuronal exosomes may document preclinical AD.METHODS: AD neuropathogenic proteins Aβ1-42, P-T181-tau, and P-S396-tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls.RESULTS: Neuronal exosome levels of Aβ1-42, P-T181-tau, and P-S396-tau were significantly elevated in individuals with DS compared with age-matched controls at all ages beginning in childhood. No significant gender differences were observed.DISCUSSION: These early increases in Aβ1-42, P-T181-tau, and P-S396-tau in individuals with DS may provide a basis for early intervention as targeted treatments become available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy