SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boswijk Gretel) "

Sökning: WFRF:(Boswijk Gretel)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Büntgen, Ulf, et al. (författare)
  • Global wood anatomical perspective on the onset of the Late Antique Little Ice Age (LALIA) in the mid-6th century CE
  • 2022
  • Ingår i: Science Bulletin. - : Elsevier BV. - 2095-9273. ; 67:22, s. 2336-2344
  • Tidskriftsartikel (refereegranskat)abstract
    • Linked to major volcanic eruptions around 536 and 540 CE, the onset of the Late Antique Little Ice Age has been described as the coldest period of the past two millennia. The exact timing and spatial extent of this exceptional cold phase are, however, still under debate because of the limited resolution and geographical distribution of the available proxy archives. Here, we use 106 wood anatomical thin sections from 23 forest sites and 20 tree species in both hemispheres to search for cell-level fingerprints of ephemeral summer cooling between 530 and 550 CE. After cross-dating and double-staining, we identified 89 Blue Rings (lack of cell wall lignification), nine Frost Rings (cell deformation and collapse), and 93 Light Rings (reduced cell wall thickening) in the Northern Hemisphere. Our network reveals evidence for the strongest temperature depression between mid-July and early-August 536 CE across North America and Eurasia, whereas more localised cold spells occurred in the summers of 532, 540–43, and 548 CE. The lack of anatomical signatures in the austral trees suggests limited incursion of stratospheric volcanic aerosol into the Southern Hemisphere extra-tropics, that any forcing was mitigated by atmosphere-ocean dynamical responses and/or concentrated outside the growing season, or a combination of factors. Our findings demonstrate the advantage of wood anatomical investigations over traditional dendrochronological measurements, provide a benchmark for Earth system models, support cross-disciplinary studies into the entanglements of climate and history, and question the relevance of global climate averages.
  •  
2.
  • Turney, Chris S M, et al. (författare)
  • Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.
  •  
3.
  • Wilson, Rob, et al. (författare)
  • Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:24, s. 6393-6421
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate a range of blue intensity (BI) treering parameters in eight conifer species (12 sites) from Tasmania and New Zealand for their dendroclimatic potential, and as surrogate wood anatomical proxies. Using a dataset of ca. 10-15 trees per site, we measured earlywood maximum blue intensity (EWB), latewood minimum blue intensity (LWB), and the associated delta blue intensity (DB) parameter for dendrochronological analysis. No resin extraction was performed, impacting low-frequency trends. Therefore, we focused only on the high-frequency signal by detrending all tree-ring and climate data using a 20-year cubic smoothing spline. All BI parameters express low relative variance and weak signal strength compared to ring width. Correlation analysis and principal component regression experiments identified a weak and variable climate response for most ring-width chronologies. However, for most sites, the EWB data, despite weak signal strength, expressed strong coherence with summer temperatures. Significant correlations for LWB were also noted, but the sign of the relationship for most species is opposite to that reported for all conifer species in the Northern Hemisphere. DB results were mixed but performed better for the Tasmanian sites when combined through principal component regression methods than for New Zealand. Using the full multi-species/parameter network, excellent summer temperature calibration was identified for both Tasmania and New Zealand ranging from 52% to 78% explained variance for split periods (1901-1950/1951-1995), with equally robust independent validation (coefficient of efficiency = 0.41 to 0.77). Comparison of the Tasmanian BI reconstruction with a quantitative wood anatomical (QWA) reconstruction shows that these parameters record essentially the same strong high-frequency summer temperature signal. Despite these excellent results, a substantial challenge exists with the capture of potential secular-scale climate trends. Although DB, band-pass, and other signal processing methods may help with this issue, substantially more experimentation is needed in conjunction with comparative analysis with ring density and QWA measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy