SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bournaud F.) "

Search: WFRF:(Bournaud F.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arabsalmani, M., et al. (author)
  • A Superluminous Supernova in High Surface Density Molecular Gas within the Bar of a Metal-rich Galaxy
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 882:1
  • Journal article (peer-reviewed)abstract
    • We report the Atacama Large Millimeter/submillimeter Array observations of the metal-rich host galaxy of superluminous supernova (SLSN) PTF10tpz, a barred spiral galaxy at z = 0.03994. We find the CO(1-0) emission to be confined within the bar of the galaxy. The distribution and kinematics of molecular gas in the host galaxy resemble gas flows along two lanes running from the tips of the bar toward the galaxy center. These gas lanes end in a gaseous structure in the inner region of the galaxy, likely associated with an inner Lindblad resonance. The interaction between the large-scale gas flows in the bar and the gas in the inner region plausibly leads to the formation of massive molecular clouds and consequently massive clusters. This in turn can result in formation of massive stars, and thus the likely progenitor of the SLSN in a young, massive cluster. This picture is consistent with SLSN PTF10tpz being located near the intersection regions of the gas lanes and the inner structure. It is also supported by the high molecular gas surface densities that we find in the vicinity of the SLSN, surface densities that are comparable with those in interacting galaxies or starburst regions in nearby galaxies. Our findings therefore suggest in situ formation of massive stars due to the internal dynamics of the host galaxy and also lend support to high densities being favorable conditions for formation of SLSN progenitors.
  •  
2.
  • Arabsalmani, M., et al. (author)
  • Local Starburst Conditions and Formation of GRB 980425/SN 1998bw within a Collisional Ring
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:2
  • Journal article (peer-reviewed)abstract
    • We present the first spatially resolved study of molecular gas in the vicinity of a gamma-ray burst (GRB), using CO(2-1) emission-line observations with the Atacama Large Millimetre Array at ∼50 pc scales. The host galaxy of GRB 980425 contains a ring of high column density H i gas, which is likely to have formed due to a collision between the GRB host and its companion galaxy, within which the GRB is located. We detect 11 molecular gas clumps in the galaxy, 7 of which are within the gas ring. The clump closest to the GRB position is at a projected separation of ∼280 pc. Although it is plausible that the GRB progenitor was ejected from clusters formed in this clump, we argue that the in situ formation of the GRB progenitor is the most likely scenario. We measure the molecular gas masses of the clumps and find them to be sufficient for forming massive star clusters. The molecular gas depletion times of the clumps show a variation of ∼2 dex, comparable with the large variation in depletion times found in starburst galaxies in the nearby universe. This demonstrates the presence of starburst modes of star formation on local scales in the galaxy, even while the galaxy as a whole cannot be categorized as a starburst based on its global properties. Our findings suggest that the progenitor of GRB 9802425 was originated in a young massive star cluster formed in the starburst mode of star formation.
  •  
3.
  • Elmegreen, Bruce G., et al. (author)
  • Spatial Segregation of Massive Clusters in Dwarf Galaxies
  • 2020
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 888:2
  • Journal article (peer-reviewed)abstract
    • The relative average minimum projected separations of star clusters in the Legacy ExtraGalactic UV Survey (LEGUS) and in tidal dwarfs around the interacting galaxy NGC 5291 are determined as a function of cluster mass to look for cluster-cluster mass segregation. Class 2 and 3 LEGUS clusters, which have a more irregular internal structure than the compact and symmetric class 1 clusters, are found to be mass-segregated in low-mass galaxies, which means that the more massive clusters are systematically bunched together compared to the lower-mass clusters. This mass segregation is not present in high-mass galaxies or class 1 clusters. We consider possible causes for this segregation, including differences in cluster formation and scattering in the shallow gravitational potentials of low-mass galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view