SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Braem Annabel) "

Search: WFRF:(Braem Annabel)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Botvinik-Nezer, Rotem, et al. (author)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Journal article (peer-reviewed)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
2.
  • Gerits, Evelien, et al. (author)
  • Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces
  • 2016
  • In: Journal of Orthopaedic Research. - : John Wiley and Sons Inc.. - 0736-0266 .- 1554-527X. ; 34:12, s. 2191-2198
  • Journal article (peer-reviewed)abstract
    • Biofilm-associated infections, particularly those caused by Staphylococcus aureus, are a major cause of implant failure. Covalent coupling of broad-spectrum antimicrobials to implants is a promising approach to reduce the risk of infections. In this study, we developed titanium substrates on which the recently discovered antibacterial agent SPI031, a N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol, was covalently linked (SPI031-Ti). We found that SPI031-Ti substrates prevent biofilm formation of S. aureus and Pseudomonas aeruginosa in vitro, as quantified by plate counting and fluorescence microscopy. To test the effectiveness of SPI031-Ti substrates in vivo, we used an adapted in vivo biomaterial-associated infection model in mice in which SPI031-Ti substrates were implanted subcutaneously and subsequently inoculated with S. aureus. Using this model, we found a significant reduction in biofilm formation (up to 98%) on SPI031-Ti substrates compared to control substrates. Finally, we demonstrated that the functionalization of the titanium surfaces with SPI031 did not influence the adhesion and proliferation of human cells important for osseointegration and bone repair. In conclusion, these data demonstrate the clinical potential of SPI031 to be used as an antibacterial coating for implants, thereby reducing the incidence of implant-associated infections.
  •  
3.
  • Peeters, Elien, et al. (author)
  • An antibiofilm coating of 5-aryl-2-aminoimidazole covalently attached to a titanium surface
  • 2019
  • In: Journal of Biomedical Materials Research. Part B - Applied biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 107:6, s. 1908-1919
  • Journal article (peer-reviewed)abstract
    • Biofilms, especially those formed by Staphylococcus aureus, play a key role in the development of orthopedic implant infections. Eradication of these infections is challenging due to the elevated tolerance of biofilm cells against antimicrobial agents. In this study, we developed an antibiofilm coating consisting of 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine, designated as LC0024, covalently bound to a titanium implant surface (LC0024-Ti). We showed in vitro that the LC0024-Ti surface reduces biofilm formation of S. aureus in a specific manner without reducing the planktonic cells above the biofilm, as evaluated by plate counting and fluorescence microscopy. The advantage of compounds that only inhibit biofilm formation without affecting the viability of the planktonic cells, is that reduced development of bacterial resistance is expected. To determine the antibiofilm activity of LC0024-Ti surfaces in vivo, a biomaterial-associated murine infection model was used. The results indicated a significant reduction in S. aureus biofilm formation (up to 96%) on the LC0024-Ti substrates compared to pristine titanium controls. Additionally, we found that the LC0024-Ti substrates did not affect the attachment and proliferation of human cells involved in osseointegration and bone repair. In summary, our results emphasize the clinical potential of covalent coatings of LC0024 on titanium implant surfaces to reduce the risk of orthopedic implant infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view