SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bragazza Luca) "

Sökning: WFRF:(Bragazza Luca)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Fia, 1986-, et al. (författare)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
2.
  • Blanchet, Guillaume, et al. (författare)
  • Impacts of regional climatic fluctuations on radial growth of Siberian and Scots pine at Mukhrino mire (central-western Siberia)
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 574, s. 1209-1216
  • Tidskriftsartikel (refereegranskat)abstract
    • Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions.
  •  
3.
  • Blanchet, Guillaume, et al. (författare)
  • Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system
  • 2016
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 230, s. 116-126
  • Tidskriftsartikel (refereegranskat)abstract
    • In agro-ecosystems, fertilization practices are crucial for sustaining crop productivity. Here, based on a 50-year long-term experiment, we studied the influence of fertilization practices (inorganic and/or organic) and nitrogen (N) application rates on (i) soil physicochemical properties, (ii) microbial and earthworm communities and (iii) crop production. Our results showed that soil organic carbon content was increased by incorporation of crop residues (+2.45%) and farmyard manure application (+6.40%) in comparison to the use of mineral fertilizer alone. In contrast, soil carbon stock was not significantly affected by these fertilization practices. Overall, only farmyard manure application improved soil physicochemical properties compared to mineral fertilization alone. Soil microbial population was enhanced by the application of organic amendments as indicated by microbial biomass and phospholipid-derived fatty acids contents. The fertilization practices and the N application rates affected significantly both the biomass and composition of earthworm populations, especially the epigeic and endogeic species. Finally, farmyard manure application significantly increased crop yield (+3.5%) in comparison to mineral fertilization alone. Crop residue incorporation rendered variable but similar crop yields over the 50-year period. The results of this long-term experiment indicate that the use of organic amendments not only reduces the need for higher amount of mineral N fertilizer but also improves the soil biological properties with direct effects on crop yield.
  •  
4.
  • Bragazza, Luca, et al. (författare)
  • Atmospheric nitrogen deposition promotes carbon loss from peat bogs
  • 2006
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:51, s. 19386-19389
  • Tidskriftsartikel (refereegranskat)abstract
    • Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximate to 0.2 to 2 g center dot m(-2)center dot yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased IN availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.
  •  
5.
  • Bragazza, Luca, et al. (författare)
  • Effects of mineral and nutrient input on mire bio-geochemistry in two geographical regions
  • 2003
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 91:3, s. 417-426
  • Tidskriftsartikel (refereegranskat)abstract
    • 1 We assessed the role of climatic conditions and the effects of different, long-term atmospheric depositions in controlling the mineral and nutrient contents in pore-water, surface peat and in living Sphagna at a boreo-nemoral mire in Sweden and an alpine mire in Italy. 2 The terrestrial contribution of Ca2+, Mg2+ and SO42- in bulk precipitation was much greater at the Italian mire, in accordance with the different bedrock in the region and the higher level of atmospheric pollution. 3 At both mires, the contribution of bulk precipitation to the concentration of major ions in mire pore-water was much greater in the ombrotrophic than in the minerotrophic part, because of the raised morphology of the mires, which limited the inflow of mineral soil water to the margins. The only ions strongly depleted in mire pore-water compared with precipitation were K+, NO3- and NH4+ and these were therefore limiting to plant growth. 4 Higher SO42- concentration in pore-water at the Swedish mire, which experienced lower atmospheric inputs of sulphate, was probably caused by oxidative processes during a long dry period in the summer before sampling. 5 Higher rates of NO3-, NH4+, as well as SO42- atmospheric inputs at the Italian mire were reflected in significantly higher N and, partly, S concentrations in ombrotrophic Sphagna. Higher NO3- concentration in pore-water at the Italian mire was associated with a lower N retention coefficient of the ombrotrophic Sphagnum plants, suggesting a reduced nitrogen filtering ability of the moss layer.
  •  
6.
  • Gavazov, Konstantin, 1983-, et al. (författare)
  • Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change
  • 2018
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 24:9, s. 3911-3921
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb-C-14) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.
  •  
7.
  • Granath, Gustaf, et al. (författare)
  • Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 15:16, s. 5189-5202
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
  •  
8.
  • Robroek, Bjorn J. M., et al. (författare)
  • Microclimatological consequences for plant and microbial composition in Sphagnum-dominated peatlands
  • 2014
  • Ingår i: Boreal environment research. - Helsinki, Finland : Finnish Environment Institute. - 1239-6095 .- 1797-2469. ; 19:3, s. 195-208
  • Tidskriftsartikel (refereegranskat)abstract
    • In three Scandinavian peatlands we studied to what extent plant and microbial community compositions are governed by local-scale microhabitat, with a special interest in the effect of aspect (i.e. exposition of slopes). Despite differences in solar irradiance between the south- and north-facing slopes, maximum temperature was elevated in the south-facing slopes at the most northern site only. Pore-water nutrient concentrations were not affected by aspect, yet dissolved organic carbon concentrations were higher in the south-facing microhabitats. This was likely caused by higher vascular plant biomass. Plant and microbial community composition clearly differed among sites. In all three sites, microhabitat (i.e. prevailing water-table depth) affected the plant and microbial community compositions. Aspect, however, did not affect community composition, even though microclimate significantly differed between the south- and the north-facing aspects at the northernmost site. Our results highlight the complex link between plant community composition, microbial community and environmental conditions, which deserves much more attention than currently in order to fully understand the effects of climate change on peatland ecosystem function.
  •  
9.
  • Robroek, Björn J. M., et al. (författare)
  • Taxonomic and functional turnover are decoupled in European peat bogs
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change.
  •  
10.
  • Singer, David, et al. (författare)
  • Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:12, s. 3089-3100
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy