SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brout Dillon) "

Sökning: WFRF:(Brout Dillon)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brout, Dillon, et al. (författare)
  • The Pantheon+ analysis : cosmological constraints
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find ΩM = 0.334 ± 0.018 from SNe Ia alone. For a flat w0CDM model, we measure w0 = −0.90 ± 0.14 from SNe Ia alone, H0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w0 = -0.978-+0.0310.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w0waCDM universe, and measure wa = -0.1-+2.00.9 from Pantheon+ SNe Ia alone, H0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and wa = -0.65-+0.320.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
  •  
2.
  • Brout, Dillon, et al. (författare)
  • The Pantheon+ analysis : supercal-fragilistic cross calibration, retrained SALT2 light-curve model, and calibration systematic uncertainty
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a recalibration of the photometric systems in the Pantheon+ sample of Type Ia supernovae (SNe Ia) including those in the SH0ES distance-ladder measurement of H0. We utilize the large and uniform sky coverage of the public Pan-STARRS stellar photometry catalog to cross calibrate against tertiary standards released by individual SN Ia surveys. The most significant updates over the “SuperCal” cross calibration used for the previous Pantheon and SH0ES analyses are: (1) expansion of the number of photometric systems (now 25) and filters (now 105), (2) solving for all filter offsets in all systems simultaneously to produce a calibration uncertainty covariance matrix for cosmological-model constraints, and (3) accounting for the change in the fundamental flux calibration of the Hubble Space Telescope CALSPEC standards from previous versions on the order of 1.5% over a Δλ of 4000 Å. We retrain the SALT2 model and find that our new model coupled with the new calibration of the light curves themselves causes a net distance modulus change (dμ/dz) of 0.04 mag over the redshift range 0 < z < 1. We introduce a new formalism to determine the systematic impact on cosmological inference by propagating the covariance in the fitted calibration offsets through retraining simultaneously with light-curve fitting and find a total calibration uncertainty impact of σw = 0.013; roughly half the size of the sample statistical uncertainty. Similarly, we find the systematic SN calibration contribution to the SH0ES H0 uncertainty is less than 0.2 km s−1 Mpc−1, suggesting that SN Ia calibration cannot resolve the current level of the “Hubble Tension.”
  •  
3.
  • Murakami, Yukei S., et al. (författare)
  • Leveraging SN Ia spectroscopic similarity to improve the measurement of H0
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - 1475-7516. ; 2023:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest spectroscopic differences explain a fraction of the variation in Type Ia supernova (SN Ia) luminosities after light-curve/color standardization. In this work, (i) we empirically characterize the variations of standardized SN Ia luminosities, and (ii) we use a spectroscopically inferred parameter, SIP, to improve the precision of SNe Ia along the distance ladder and the determination of the Hubble constant (H0). First, we show that thePantheon+ covariance model modestly overestimates the uncertainty of standardized magnitudes by ∼ 7%, in the parameter space used by the SH0ES Team to measure H0; accounting for this alone yields H0 = 73.01 ± 0.92 km s-1 Mpc-1. Furthermore, accounting for spectroscopic similarity between SNe Ia on the distance ladder reduces their relative scatter to ∼ 0.12 mag per object (compared to ∼ 0.14 mag previously). Combining these two findings in the model of SN covariance, we find an overall 14% reduction (to ± 0.85 km s-1 Mpc-1) of the uncertainty in the Hubble constant and a modest increase in its value. Including a budget for systematic uncertainties itemized by Riess et al. (2022a), we report an updated local Hubble constant with ∼ 1.2% uncertainty, H0 = 73.29 ± 0.90 km s-1 Mpc-1. We conclude that spectroscopic differences among photometrically standardized SNe Ia do not explain the "Hubble tension". Rather, accounting for such differences increases its significance, as the discrepancy against ΛCDM calibrated by the Planck 2018 measurement rises to 5.7σ.
  •  
4.
  • Scolnic, Dan, et al. (författare)
  • The Pantheon+ analysis : the full data set and light-curve release
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present 1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the Supernovae and H0 for the Equation of State of dark energy distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z < 0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of “SN siblings”—SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al., and the determination of H0 is discussed by Riess et al. These analyses will measure w with ∼3% precision and H0 with ∼1 km s−1 Mpc−1 precision.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy