SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunet Sofia) "

Sökning: WFRF:(Brunet Sofia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Choong, Oi Kuan, 1985, et al. (författare)
  • SARS-CoV-2 replicates and displays oncolytic properties in clear cell and papillary renal cell carcinoma
  • 2023
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 virus is currently causing a global pandemic. Infection may result in a systemic disease called COVID-19, affecting primarily the respiratory tract. Often the gastrointestinal tract and kidneys also become involved. Angiotensin converting enzyme 2 (ACE2) serves as the receptor for SARS-CoV-2. The membrane proteins, Transmembrane serine protease 2 (TMPRSS2) and Neuropilin 1 (NRP1) are accessory proteins facilitating the virus entry. In this study we show that the human proximal kidney tubules, express these factors. We hypothesized that cancers derived from proximal tubules as clear cell (CCRCC) and papillary renal cell carcinoma (PRCC), retain the expression of the SARS-CoV-2 entry factors making these cancers susceptible to SARS-CoV-2 infection. We used bioinformatics, western blotting, and assessment of tissue micro arrays (TMA) including 263 cases of CCRCC, 139 cases of PRCC and 18 cases of chromophobe RCC to demonstrate that the majority of CCRCC and PRCC cases retained the RNA and protein expression of the entry factors for SARS-CoV-2. We furthermore show that SARS-CoV-2 virus propagated robustly in primary cultures of CCRCC and PRCC cells with a visible virus cytopathogenic effect correlating with viral RNA expression levels. We also noted that the delta-variant of SARS-CoV-2 causes cancer cells to form syncytia in-vitro. This phenomenon was also identified histologically in CCRCC tissue from a patient that had been hospitalized for COVID-19, twelve months prior to nephrectomy. Our data provide insights into SARS-CoV-2 infectivity in renal cell carcinoma and that the virus causes a distinct cytopathogenic effect.
  •  
2.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
3.
  • Nyström, Kristina, 1977, et al. (författare)
  • Inosine Triphosphate Pyrophosphatase Dephosphorylates Ribavirin Triphosphate and Reduced Enzymatic Activity Potentiates Mutagenesis in Hepatitis C Virus
  • 2018
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 92:19
  • Tidskriftsartikel (refereegranskat)abstract
    • A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies. IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.
  •  
4.
  • Nyström, Kristina, et al. (författare)
  • Inosine triphosphate pyrophosphatase dephosphorylates ribavirin triphosphate and reduced enzymatic activity potentiates mutagenesis in hepatitis C virus
  • 2018
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 92:19
  • Tidskriftsartikel (refereegranskat)abstract
    • A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies. IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Nilsson, Staffan, 19 ... (2)
Hellstrand, Kristoff ... (2)
Børresen-Dale, Anne- ... (1)
Nevanlinna, Heli (1)
Blomqvist, Carl (1)
Aittomäki, Kristiina (1)
visa fler...
Yoon, Sook-Yee (1)
Chang-Claude, Jenny (1)
Wang, Qin (1)
Haiman, Christopher ... (1)
Muir, Kenneth (1)
Giles, Graham G (1)
Cybulski, Cezary (1)
Brenner, Hermann (1)
John, Esther M (1)
Teixeira, Manuel R (1)
Neuhausen, Susan L (1)
Darabi, Hatef (1)
Seynaeve, C (1)
Arndt, Volker (1)
Rennert, Gad (1)
Wu, Anna H. (1)
Goode, Ellen L. (1)
Brunet, Joan (1)
Michailidou, Kyriaki (1)
Milne, Roger L. (1)
Bolla, Manjeet K. (1)
Dennis, Joe (1)
Dunning, Alison M. (1)
Andrulis, Irene L. (1)
Anton-Culver, Hoda (1)
Benitez, Javier (1)
Bojesen, Stig E. (1)
Bonanni, Bernardo (1)
Brauch, Hiltrud (1)
Burwinkel, Barbara (1)
Buys, Saundra S. (1)
Chenevix-Trench, Geo ... (1)
Cox, Angela (1)
Cross, Simon S. (1)
Czene, Kamila (1)
Daly, Mary B. (1)
Devilee, Peter (1)
Evans, D. Gareth (1)
Fasching, Peter A. (1)
Figueroa, Jonine (1)
Goldberg, Mark S. (1)
Gonzalez-Neira, Anna (1)
Guenel, Pascal (1)
Hall, Per (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Umeå universitet (1)
Uppsala universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy