SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Caltabiano T) "

Search: WFRF:(Caltabiano T)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ragusa, M., et al. (author)
  • miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications
  • 2015
  • In: Cancer Biology & Therapy. - : Informa UK Limited. - 1538-4047 .- 1555-8576. ; 16:9, s. 1387-1396
  • Journal article (peer-reviewed)abstract
    • Uveal melanoma (UM) represents approximately 5-6% of all melanoma diagnoses and up to 50% of patients succumb to their disease. Although several methods are available, accurate diagnosis is not always easily feasible because of potential accidents (e.g., intraocular hemorrhage). Based on the assumption that the profile of circulating miRNAs is often altered in human cancers, we verified whether UM patients showed different vitreous humor (VH) or serum miRNA profiles with respect to healthy controls. By using TaqMan Low Density Arrays, we analyzed 754 miRNAs from VH, vitreal exosomes, and serum of 6 UM patients and 6 healthy donors: our data demonstrated that the UM VH profile was unique and only partially overlapping with that from serum of the same patients. Whereas, 90% of miRNAs were shared between VH and vitreal exosomes, and their alterations in UM were statistically overlapped with those of VH and vitreal exosomes, suggesting that VH alterations could result from exosomal dysregulation. We report 32 miRNAs differentially expressed in UM patients in at least 2 different types of samples analyzed. We validated these data on an independent cohort of 12 UM patients. Most alterations were common to VH and vitreal exosomes (e.g., upregulation of miR-21,-34 a,-146a). Interestingly, miR-146a was upregulated in the serum of UM patients, as well as in serum exosomes. Upregulation of miR-21 and miR-146a was also detected in formalin-fixed, paraffin-embedded UM, suggesting that VH or serum alterations in UM could be the consequence of disregulation arising from tumoral cells. Our findings suggest the possibility to detect in VH and serum of UM patients diagnostic miRNAs released by the affected eye: based on this, miR-146a could be considered a potential circulating marker of UM.
  •  
2.
  • Weibring, Petter, et al. (author)
  • Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)
  • 1998
  • In: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171. ; 67:4, s. 419-426
  • Journal article (peer-reviewed)abstract
    • The total fluxes of sulphur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano were studied using optical remote sensing techniques in three shipborne field experiments (1992, 1994, and 1997). The main purpose of the experiments was to compare active (laser) techniques with passive monitoring. Differential absorption lidar (DIAL) measurements were implemented by placing the Swedish mobile lidar system on board the Italian research vessel Urania, sailing under the volcanic plumes. Simultaneously, the passive differential optical absorption spectroscopy (DOAS) technique was used for assessing the total overhead gas burden. Finally, correlation spectroscopy (COSPEC) was also implemented in one of the campaigns. Differences in integrated gas column assessment are expected and observed, mostly connected to complex scattering conditions influencing the passive measurements. Since such measurements are much employed in routine volcanic monitoring it is of great interest to model and provide corrections to the raw data obtained. Lidar measurements proved to be quite useful for this purpose. By combining the integrated gas concentration over the plume cross section with wind velocity data, SO2 fluxes of the order of 1000, 100, and 10 tonnes/day were measured for Mt. Etna, Stromboli, and Vulcano, respectively.
  •  
3.
  • Weibring, Petter, et al. (author)
  • Optical monitoring of volcanic sulphur dioxide emissions - comparison between four different remote-sensing spectroscopic techniques
  • 2002
  • In: Optics and Lasers in Engineering. - 0143-8166. ; 37:2-3, s. 267-284
  • Journal article (peer-reviewed)abstract
    • The emissions of sulphur dioxide from the Italian volcanoes Mt. Etna and Stromboli were studied in ship-borne underpasses of their plumes. Four different optical spectroscopy techniques were used and inter-compared. All techniques utilise the absorption signature of the gas in the wavelength region of around 300 nm. A differential absorption lidar was employed in active gas concentration assessment. In parallel, a differential optical absorption spectroscopy system (DOAS) provided spectrally resolved absorption spectra, In one configuration the DOAS used a vertically looking telescope and the absorption of the skylight was studied, while a different DOAS implementation utilised the sun disc as the light source in slant-angle, long-path absorption measurements. Parallel measurements with the customary correlation spectroscopy method were also performed. Path length Monte Carlo simulations of the down-welling radiation through the volcanic plume at different sun altitude and azimuth angles have been performed taking into account also the effects of other geometric parameters as the plume height and extension. The results are discussed with special emphasis on systematic effects due to scattering.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view