SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chadburn S. E.) "

Search: WFRF:(Chadburn S. E.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Chadburn, S. E., et al. (author)
  • An observation-based constraint on permafrost loss as a function of global warming
  • 2017
  • In: Nature Climate Change. - 1758-678X .- 1758-6798. ; 7:5, s. 340-344
  • Journal article (peer-reviewed)abstract
    • Permafrost, which covers 15 million km(2) of the land surface, is one of the components of the Earth system that is most sensitive to warming(1,2). Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change(3-8). The latest climate models all predict warming of high-latitude soils and thus thawing of permafrost under future climate change, but with widely varying magnitudes of permafrost thaw(9,10). Here we show that in each of the models, their present-day spatial distribution of permafrost and air temperature can be used to infer the sensitivity of permafrost to future global warming. Using the same approach for the observed permafrost distribution and air temperature, we estimate a sensitivity of permafrost area loss to global mean warming at stabilization of 4.0(-1.1)(+1.0) million km(2) degrees C-1 (1 sigma confidence), which is around 20% higher than previous studies(9). Our method facilitates an assessment for COP21 climate change targets(11): if the climate is stabilized at 2 degrees C above pre-industrial levels, we estimate that the permafrost area would eventually be reduced by over 40%. Stabilizing at 1.5 degrees C rather than 2 degrees C would save approximately 2 million km(2) of permafrost.
  •  
3.
  • Ekici, Sait Altug, et al. (author)
  • Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes
  • 2015
  • In: The Cryosphere. - : Copernicus GmbH. - 1994-0424 .- 1994-0416. ; 9:4, s. 1343-1361
  • Journal article (peer-reviewed)abstract
    • Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view