SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chalermsook P.) "

Sökning: WFRF:(Chalermsook P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chalermsook, P., et al. (författare)
  • Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver
  • 2022
  • Ingår i: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). - : Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • In the k-edge-connected spanning subgraph (kECSS) problem, our goal is to compute a minimum-cost sub-network that is resilient against up to k link failures: Given an n-node m-edge graph with a cost function on the edges, our goal is to compute a minimum-cost k-edge-connected spanning subgraph. This NP-hard problem generalizes the minimum spanning tree problem and is the “uniform case” of a much broader class of survival network design problems (SNDP). A factor of two has remained the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even for a special case of 2ECSS. The fastest 2-approximation algorithm is however rather slow, taking O(mnk) time [Khuller, Vishkin, STOC'92]. A faster time complexity of O(n2) can be obtained, but with a higher approximation guarantee of (2k − 1) [Gabow, Goemans, Williamson, IPCO'93]. Our main contribution is an algorithm that (1 + ε)-approximates the optimal fractional solution in Õ(m/ε2) time (independent of k), which can be turned into a (2 + ε) approximation algorithm that runs in time (Equation presented) for (integral) kECSS; this improves the running time of the aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.
  •  
2.
  • Chalermsook, P., et al. (författare)
  • Greedy is an almost optimal deque
  • 2015
  • Ingår i: 14th International Symposium on Algorithms and Data Structures, WADS 2015. - Cham : Springer. - 9783319218397 ; , s. 152-165
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we extend the geometric binary search tree (BST) model of Demaine, Harmon, Iacono, Kane, and Pătraşcu (DHIKP) to accommodate for insertions and deletions. Within this extended model, we study the online GREEDY BST algorithm introduced by DHIKP. GREEDY BST is known to be equivalent to a maximally greedy (but inherently offline) algorithm introduced independently by Lucas in 1988 and Munro in 2000, conjectured to be dynamically optimal. With the application of forbidden-submatrix theory, we prove a quasilinear upper bound on the performance of GREEDY BST on deque sequences. It has been conjectured (Tarjan, 1985) that splay trees (Sleator and Tarjan, 1983) can serve such sequences in linear time. Currently neither splay trees, nor other general-purpose BST algorithms are known to fulfill this requirement. As a special case, we show that GREEDY BST can serve output-restricted deque sequences in linear time. A similar result is known for splay trees (Tarjan, 1985; Elmasry, 2004). As a further application of the insert-delete model, we give a simple proof that, given a set U of permutations of [n], the access cost of any BST algorithm is Ω(log |U| + n) on “most” of the permutations from U. In particular, this implies that the access cost for a random permutation of [n] is Ω(n log n) with high probability. Besides the splay tree noted before, GREEDY BST has recently emerged as a plausible candidate for dynamic optimality. Compared to splay trees, much less effort has gone into analyzing GREEDY BST. Our work is intended as a step towards a full understanding of GREEDY BST, and we remark that forbidden-submatrix arguments seem particularly well suited for carrying out this program.
  •  
3.
  • Chalermsook, P., et al. (författare)
  • Multi-finger binary search trees
  • 2018
  • Ingår i: Leibniz International Proceedings in Informatics, LIPIcs. - : Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. - 9783959770941 ; , s. 55:1-55:26
  • Konferensbidrag (refereegranskat)abstract
    • We study multi-finger binary search trees (BSTs), a far-reaching extension of the classical BST model, with connections to the well-studied k-server problem. Finger search is a popular technique for speeding up BST operations when a query sequence has locality of reference. BSTs with multiple fingers can exploit more general regularities in the input. In this paper we consider the cost of serving a sequence of queries in an optimal (offline) BST with k fingers, a powerful benchmark against which other algorithms can be measured. We show that the k-finger optimum can be matched by a standard dynamic BST (having a single root-finger) with an O(log k) factor overhead. This result is tight for all k, improving the O(k) factor implicit in earlier work. Furthermore, we describe new online BSTs that match this bound up to a (log k) O (1) factor. Previously only the “one-finger” special case was known to hold for an online BST (Iacono, Langerman, 2016; Cole et al., 2000). Splay trees, assuming their conjectured optimality (Sleator and Tarjan, 1983), would have to match our bounds for all k. Our online algorithms are randomized and combine techniques developed for the k-server problem with a multiplicative-weights scheme for learning tree metrics. To our knowledge, this is the first time when tools developed for the k-server problem are used in BSTs. As an application of our k-finger results, we show that BSTs can efficiently serve queries that are close to some recently accessed item. This is a (restricted) form of the unified property (Iacono, 2001) that was previously not known to hold for any BST algorithm, online or offline.
  •  
4.
  • Chalermsook, P., et al. (författare)
  • Pattern-Avoiding Access in Binary Search Trees
  • 2015
  • Ingår i: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467381918 ; , s. 410-423
  • Konferensbidrag (refereegranskat)abstract
    • The dynamic optimality conjecture is perhaps the most fundamental open question about binary search trees (BST). It postulates the existence of an asymptotically optimal online BST, i.e. One that is constant factor competitive with any BST on any input access sequence. The two main candidates for dynamic optimality in the literature are splay trees [Sleator and Tarjan, 1985], and Greedy [Lucas, 1988, Munro, 2000, Demaine et al. 2009]. Despite BSTs being among the simplest data structures in computer science, and despite extensive effort over the past three decades, the conjecture remains elusive. Dynamic optimality is trivial for almost all sequences: the optimum access cost of most length-n sequences is Theta(n log n), achievable by any balanced BST. Thus, the obvious missing step towards the conjecture is an understanding of the 'easy' access sequences, and indeed the most fruitful research direction so far has been the study of specific sequences, whose 'easiness' is captured by a parameter of interest. For instance, splay provably achieves the bound of O(nd) when d roughly measures the distances between consecutive accesses (dynamic finger), the average entropy (static optimality), or the delays between multiple accesses of an element(working set). The difficulty of proving dynamic optimality is witnessed by other highly restricted special cases that remain unresolved, one prominent example is the traversal conjecture [Sleator and Tarjan, 1985], which states that preorder sequences (whose optimum is linear) are linear-time accessed by splay trees, no online BST is known to satisfy this conjecture. In this paper, we prove two different relaxations of the traversal conjecture for Greedy: (i) Greedy is almost linear for preorder traversal, (ii) if a linear-time preprocessing is allowed, Greedy is in fact linear. These statements are corollaries of our more general results that express the complexity of access sequences in terms of a pattern avoidance parameter k. Pattern avoidance is a well-established concept in combinatorics, and the classes of input sequences thus defined are rich, e.g. The k = 3 case includes preorder sequences. For any sequence X with parameter k, our most general result shows that Greedy achieves the cost n2α(n)O(k) where α is the inverse Ackermann function. Furthermore, a broad subclass of parameter-k sequences has a natural combinatorial interpretation as k-decomposable sequences. For this class of inputs, we obtain an n∗2O(k) bound for Greedy when preprocessing is allowed. For k = 3, these results imply (i) and (ii). To our knowledge, these are the first upper bounds for Greedy that are not known to hold for any other online BST. To obtain these results we identify an input-revealing property of Greedy. Informally, this means that the execution log partially reveals the structure of the access sequence. This property facilitates the use of rich technical tools from forbidden sub matrix theory. Further studying the intrinsic complexity of k-decomposable sequences, we make several observations. First, in order to obtain an offline optimal BST, it is enough to bound Greedy on non-decomposable access sequences. Furthermore, we show that the optimal cost for k-decomposable sequences is Theta(n log k), which is well below the proven performance of all known BST algorithms. Hence, sequences in this class can be seen as a 'candidate counterexample' to dynamic optimality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy