SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cieśla Maciej) "

Sökning: WFRF:(Cieśla Maciej)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beneventi, Giulia, et al. (författare)
  • The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells
  • 2021
  • Ingår i: NAR Cancer. - : Oxford University Press (OUP). - 2632-8674. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell sur- vival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.
  •  
2.
  • Ciesla, Maciej, et al. (författare)
  • m6A-driven SF3B1 translation control steers splicing to direct genome integrity and leukemogenesis
  • 2023
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 83:7, s. 11-1179
  • Tidskriftsartikel (refereegranskat)abstract
    • SF3B1 is the most mutated splicing factor (SF) in myelodysplastic syndromes (MDSs), which are clonal hematopoietic disorders with variable risk of leukemic transformation. Although tumorigenic SF3B1 mutations have been extensively characterized, the role of “non-mutated” wild-type SF3B1 in cancer remains largely unresolved. Here, we identify a conserved epitranscriptomic program that steers SF3B1 levels to counteract leukemogenesis. Our analysis of human and murine pre-leukemic MDS cells reveals dynamic regulation of SF3B1 protein abundance, which affects MDS-to-leukemia progression in vivo. Mechanistically, ALKBH5-driven 5′ UTR m6A demethylation fine-tunes SF3B1 translation directing splicing of central DNA repair and epigenetic regulators during transformation. This impacts genome stability and leukemia progression in vivo, supporting an integrative analysis in humans that SF3B1 molecular signatures may predict mutational variability and poor prognosis. These findings highlight a post-transcriptional gene expression nexus that unveils unanticipated SF3B1-dependent cancer vulnerabilities.
  •  
3.
  • Ciesla, Maciej, et al. (författare)
  • Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer
  • 2021
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765. ; 81:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.
  •  
4.
  • Cieśla, Maciej (författare)
  • RNA in cancer
  • 2020
  • Ingår i: RNA-Based Regulation in Human Health and Disease. - 9780128171936 ; , s. 251-274
  • Bokkapitel (refereegranskat)abstract
    • RNA based processes are in the limelight due to the current technological advances from the fields of high throughput sequencing, structural probing and super-high resolution imaging. RNA biology is implicated in wide range of processes including embryonal development, maintenance of tissue homeostasis or tumor development and progression. We now gain insights at the unprecedented level on how RNAs are modified epitranscriptionally, what are elements regulating translation, how they are dynamically folded, processed to shorter fragments or spliced to elicit tumorigenic effects. Herein, we discuss the implications of the regulation of different RNA species including messenger, non-coding, transfer and ribosomal RNAs and their downstream effector pathways for regulation of cancerogenesis.
  •  
5.
  • Fraczyk, Tomasz, et al. (författare)
  • Phosphorylation of thymidylate synthase from various sources by human protein kinase CK2 and its catalytic subunits
  • 2010
  • Ingår i: Bioorganic chemistry (Print). - : Elsevier BV. - 0045-2068. ; 38:3, s. 124-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Thymidylate synthase (TS) was found to be a substrate for both catalytic subunits of human CK2, with phosphorylation by CK2alpha and CK2alpha' characterized by similar K(m) values, 4.6microM and 4.2microM, respectively, but different efficiencies, the apparent turnover number with CK2alpha being 10-fold higher. With both catalytic subunits, phosphorylation of human TS, like calmodulin and BID, was strongly inhibited in the presence of the regulatory subunit CK2beta, the holoenzyme being activated by polylysine. Phosphorylation of recombinant human, rat, mouse and Trichinella spiralis TSs proteins was compared, with the human enzyme being apparently a much better substrate than the others. Following hydrolysis and TLC, phosphoserine was detected in human and rat, and phosphotyrosine in T. spiralis, TS, used as substrates for CK2alpha. MALDI-TOF MS analysis led to identification of phosphorylated Ser(124) in human TS, within a sequence LGFS(124)TREEGD, atypical for a CK2 substrate recognition site. The phosphorylation site is located in a region considered important for the catalytic mechanism or regulation of human TS, corresponding to the loop 107-128. Following phosphorylation by CK2alpha, resulting in incorporation of 0.4mol of phosphate per mol of dimeric TS, human TS exhibits unaltered K(m) values for dUMP and N(5,10)-methylenetetrahydrofolate, but a 50% lower turnover number, pointing to a strong influence of Ser(124) phosphorylation on its catalytic efficiency.
  •  
6.
  • Gaughwin, Philip, et al. (författare)
  • Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:11, s. 2225-2237
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a devastating, neurodegenerative condition, which lacks effective treatment. Normal Huntingtin (HTT) and mutant Huntingtin (mHTT) are expressed in multiple tissues and can alter transcription of microRNAs (miRs). Importantly, miRs are present in a bio-stable form in human peripheral blood plasma and have recently been shown to be useful biomarkers in other diseases. We therefore sought to identify potential miR biomarkers of HD that are present in, and have functional consequences for, neuronal and non-neuronal tissues. In a cell line over-expressing mHTT-Exon-1, miR microarray analysis was used to identify candidate miRs. We then examined their presence and bio-stability in control and HD plasma. We found that miR-34b is significantly elevated in response to mHTT-Exon-1, and its blockade alters the toxicity of mHTT-Exon-1 in vitro. We also show that miR-34b is detectable in plasma from small input volumes and is insensitive to freeze-thaw-induced RNA degradation. Interestingly, miR-34b is significantly elevated in plasma from HD gene carriers prior to symptom onset. This is the first study suggesting that plasma miRs might be used as biomarkers for HD.
  •  
7.
  • Gaughwin, Philip, et al. (författare)
  • Stage-Specific Modulation of Cortical Neuronal Development by Mmu-miR-134
  • 2011
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 21:8, s. 1857-1869
  • Tidskriftsartikel (refereegranskat)abstract
    • To realize the potential of microRNAs (miRs) as fine-tuning regulators of embryonic neuronal differentiation, it is critical to define their developmental function. Mmu-miR-134 (miR-134) is a powerful inducer of pluripotent stem cell differentiation. However, its functional role during embryonic, neuronal development is unknown. We demonstrate that mature, miR-134 transcript levels elevate during embryonic, neuronal differentiation in vitro and in vivo. To define the developmental targets and function of miR-134, we identified multiple brain-expressed targets including the neural progenitor cell-enriched, bone morphogenetic protein (BMP) antagonist Chordin-like 1 (Chrdl-1) and the postmitotic, neuron-specific, microtubule-associated protein, Doublecortin (Dcx). We show that, through interaction with Dcx and/or Chrdl-1, miR-134 has stage-specific effects on cortical progenitors, migratory neurons, and differentiated neurons. In neural progenitors, miR-134 promotes cell proliferation and counteracts Chrdl-1-induced apoptosis and Dcx-induced differentiation in vitro. In neurons, miR-134 reduces cell migration in vitro and in vivo in a Dcx-dependent manner. In differentiating neurons, miR-134 modulates process outgrowth in response to exogenous BMP-4 in a noggin-reversible manner. Taken together, we present Dcx and Chrdl-1 as new regulatory targets of miR-134 during embryonic, mouse, cortical, and neuronal differentiation and show a novel and previously undiscovered role for miR-134 in the stage-specific modulation of cortical development.
  •  
8.
  • Guzzi, Nicola, et al. (författare)
  • Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome
  • 2022
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 24:3, s. 299-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis1. Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype2, mini tRFs containing a 5′ terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1)3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5′ untranslated region (UTR), including 5′ terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer4. Significantly, mTOG dysregulation leads to aberrantly increased translation of 5′ PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML).
  •  
9.
  • Guzzi, Nicola, et al. (författare)
  • Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells
  • 2018
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 173:5, s. 26-1216
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ “writer” PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease. Translational control in stem cells is orchestrated by pseudouridylation of specific tRNA-derived fragments, impacting stem cell commitment during key developmental processes.
  •  
10.
  • Phung, Bengt, et al. (författare)
  • The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 27:12, s. 7-3586
  • Tidskriftsartikel (refereegranskat)abstract
    • The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers, including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here, we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, we identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together, these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy