SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cohen Yariv) "

Sökning: WFRF:(Cohen Yariv)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cohen, Yariv (författare)
  • Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid
  • 2009
  • Ingår i: Environmental Technology. - : Informa UK Limited. - 0959-3330 .- 1479-487X. ; 30, s. 1215-1226
  • Tidskriftsartikel (refereegranskat)abstract
    • Large amounts of phosphorus are present in organic waste, mainly in sewage sludge and animal by-products. Increasingly, the waste is incinerated and phosphorus ends up in the ash. Sustainable waste management requires the beneficial reuse of phosphorus present in such ash. The first necessary step when recovering phosphorus from ash is dissolution by acid. The objective of this study was to quantify the acid requirement for phosphorus dissolution from sewage sludge ash and animal carcass ash. Both the amount of acid applied and its concentration were varied. Furthermore, phosphorus dissolution was optimized by controlling the pH during acid addition. Elemental analysis of sewage sludge ash showed that it comprised 6-10% P, 7-18% Ca, 2-11% Fe and 3-9% Al. The elemental content of animal carcass ash was even higher: 18% P and 30% Ca. The amount of acid required to obtain 85% phosphorus dissolution from sludge ash was 0.39-0.78 kg H2SO4 kg-1 ash, depending on the total cation/phosphorus equivalent ratio. The amount required to obtain the highest possible P dissolution within two hours (73%) from animal carcass ash was 0.69 kg H2SO4 kg-1 ash. Lower amounts of sulphuric acid were required for P dissolution in ashes of sludge from a bio-P treatment process and animal carcass, compared with the theoretical acid requirement for apatite dissolution. Applying pH control during dissolution resulted in reduced acid consumption (20%) and enabled more than 85% phosphorus dissolution from sludge ash at pH 2.0 in the two-hour dissolution time.
  •  
3.
  •  
4.
  •  
5.
  • Kirchmann, Holger, et al. (författare)
  • From agricultural use of sewage sludge to nutrient extraction: A soil science outlook
  • 2017
  • Ingår i: AMBIO: A Journal of the Human Environment. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 46, s. 143-154
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metalcontaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy